1
|
Wang Z, Wan Y, Zhang Y, Zhang B, Li M, Jin X, Yang T, Meng G. 3D porous conductive matrix based on phase-transited BSA and covalent coupling-stabilized transition ZnS-CNT for antifouling and on-site detection of nitrite in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134492. [PMID: 38703687 DOI: 10.1016/j.jhazmat.2024.134492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Nitrite plays a critical role in a variety of nitrification and denitrification processes in the nitrogen cycle. Due to the high surface energy, tendency to aggregate, and poor conductivity, current nitrite ZnS-based sensing platform could not meet the need of on-site nitrite detection in smart agriculture. In order to address these issues, the carboxylated carbon nanotube (CNT) was introduced to reduce the surface energy and prevented aggregation of ZnS, while ZnS-carboxylated CNT (ZnS-CNT) composite also provided excellent electrochemical conductivity. Furthermore, the introduction of phase transition BSA (PTB) created a three-dimensional porous conductive matrix without interfering with the mass transfer process of nitrite. The resulting sensing platform exhibited a linear detection range of 10 nM to 0.4 mM for nitrite, with a detection limit of 0.73 nM. And this sensing platform had the excellent antifouling ability to direct detection nitrite in real soil suspension. In addition, the sensing platform demonstrated remarkable resistance to interferences from pH variations, microbial presence, and organic pollutants that usually present in soil environment. Therefore, on-site detection of nitrite ions in soil environment was realized no needing complex pretreatments.
Collapse
Affiliation(s)
- Zhenhao Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China; BYD Co Ltd, Shenzhen 518122, PR China
| | - Yu Wan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Ben Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Mubing Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Xi Jin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China.
| | - Guozhe Meng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China.
| |
Collapse
|
2
|
Huang Y, Chen P, Zhou L, Zheng J, Wu H, Liang J, Xiao A, Li J, Guan BO. Plasmonic Coupling on an Optical Microfiber Surface: Enabling Single-Molecule and Noninvasive Dopamine Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304116. [PMID: 37342974 DOI: 10.1002/adma.202304116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Indexed: 06/23/2023]
Abstract
Optical fibers can be effective biosensors when employed in early-stage diagnostic point-of-care devices as they can avoid interference from molecules with similar redox potentials. Nevertheless, their sensitivity needs to be improved for real-world applications, especially for small-molecule detection. This work demonstrates an optical microfiber biosensor for dopamine (DA) detection based on the DA-binding-induced aptamer conformational transitions that occur at plasmonic coupling sites on a double-amplified nanointerface. The sensor exhibits ultrahigh sensitivity when detecting DA molecules at the single-molecule level; additionally, this work provides an approach for overcoming optical device sensitivity limits, further extending optical fiber single-molecule detection to a small molecule range (e.g., DA and metal ions). The selective energy enhancement and signal amplification at the binding sites effectively avoid nonspecific amplification of the whole fiber surface which may lead to false-positive results. The sensor can detect single-molecule DA signals in body-fluids. It can detect the released extracellular DA levels and monitor the DA oxidation process. An appropriate aptamer replacement allows the sensor to be used for the detection of other target small molecules and ions at the single-molecule level. This technology offers alternative opportunities for developing noninvasive early-stage diagnostic point-of-care devices and flexible single-molecule detection techniques in theoretical research.
Collapse
Affiliation(s)
- Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Luyan Zhou
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Jiaying Zheng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Haotian Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Jiaxuan Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Aoxiang Xiao
- Department of Neurology and Stroke Center, The first Affiliated Hospital, & Clinical Neuroscience Institute, Jinan University, Guangzhou, 510630, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 511143, China
- Department of Neurology and Stroke Center, The first Affiliated Hospital, & Clinical Neuroscience Institute, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
3
|
Wang S, Yin H, Qu K, Wang L, Gong J, Zhao S, Wu S. Electrochemical sensors based on platinum-coated MOF-derived nickel-/N-doped carbon nanotubes (Pt/Ni/NCNTs) for sensitive nitrite detection. ANAL SCI 2023:10.1007/s44211-023-00336-2. [PMID: 37040003 DOI: 10.1007/s44211-023-00336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
As excess nitrite has a serious threat to the human health and environment, constructing novel electrochemical sensors for sensitive nitrite detection is of great importance. In this report, platinum nanoparticles were deposited on nickel-/N-doped carbon nanotubes, which were obtained through a self-catalytically grown process with Ni-MOF as precursors. The as-prepared Pt/Ni/NCNTs were applied as amperometric sensors and presented superior sensing properties for nitrite detection. Benefiting from the synergy of Pt and Ni/NCNTs, Pt/Ni/NCNTs displayed much wider detection ranges (0.5-40 mM and 40-110 mM) for nitrite sensing. The sensitivity is 276.92 μA mM-1 cm-2 and 224.39 μA mM-1 cm-2, respectively. The detection limit is 0.17 μM. The Pt/Ni/NCNTs sensors also showed good feasibility for nitrite sensing in real samples (milk and peach juice) analysis. The active Pt/Ni/NCNTs composites and facile fabrication technique may provide useful strategies to develop other sensitive nitrite sensors.
Collapse
Affiliation(s)
- Shuyue Wang
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
| | - Haoyong Yin
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China.
| | - Kaige Qu
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
| | - Ling Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianying Gong
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
| | - Shumin Zhao
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou, 325038, China
| | - Shengji Wu
- College of Engineering, Huzhou University, Huzhou, 313000, China.
| |
Collapse
|
4
|
Khan MA, Ramzan F, Ali M, Zubair M, Mehmood MQ, Massoud Y. Emerging Two-Dimensional Materials-Based Electrochemical Sensors for Human Health and Environment Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040780. [PMID: 36839148 PMCID: PMC9964193 DOI: 10.3390/nano13040780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/27/2023]
Abstract
Two-dimensional materials (2DMs) have been vastly studied for various electrochemical sensors. Among these, the sensors that are directly related to human life and health are extremely important. Owing to their exclusive properties, 2DMs are vastly studied for electrochemical sensing. Here we have provided a selective overview of 2DMs-based electrochemical sensors that directly affect human life and health. We have explored graphene and its derivatives, transition metal dichalcogenide and MXenes-based electrochemical sensors for applications such as glucose detection in human blood, detection of nitrates and nitrites, and sensing of pesticides. We believe that the areas discussed here are extremely important and we have summarized the prominent reports on these significant areas together. We believe that our work will be able to provide guidelines for the evolution of electrochemical sensors in the future.
Collapse
|
5
|
Ali F, Zafar A, Nisar A, Liu Y, Karim S, Faiz F, Zafar Z, Sun H, Hussain S, Faiz Y, Ali T, Javed S, Yu Y, Ahmad M. Development of MoS 2-ZnO heterostructures: an efficient bifunctional catalyst for the detection of glucose and degradation of toxic organic dyes. NEW J CHEM 2023. [DOI: 10.1039/d2nj04758f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heterostructure catalyst MoS2-ZnO possesses binary properties and provides a novel platform for the remediation of environmental as well as health issues.
Collapse
Affiliation(s)
- Farhan Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Amina Zafar
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
- Central Analytical Facility Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Amjad Nisar
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Yanguo Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Shafqat Karim
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Faisal Faiz
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Zainab Zafar
- Experimental Physics Division, National Centre for Physics, Islamabad, 44000, Pakistan
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Shafqat Hussain
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Yasir Faiz
- Chemistry Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Tahir Ali
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| | - Sofia Javed
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Yanlong Yu
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Mashkoor Ahmad
- Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad, 44000, Pakistan
| |
Collapse
|
6
|
Gao P, Zhao S, Qu X, Qian X, Duan F, Lu S, Zhu H, Du M. Bifunctional high-entropy alloys for sensitive nitrite detection and oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Wang H, Wang X, Cheng J. Bionic Enzyme-Assisted Ion-Selective Amperometric Biosensor Based on 3D Porous Conductive Matrix for Point-of-Care Nitrite Testing. ACS NANO 2022; 16:14849-14859. [PMID: 36099397 DOI: 10.1021/acsnano.2c05752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrite plays a critical role in a variety of physiological processes and maintaining the nitrite level in an appropriate range is vital to keep healthy. Current nitrite analysis methods lack sensitivity and require tedious operations, which could not meet the need of point-of-care (POC) nitrite detection in precision medicine. Here we present a cyanocobalamin (VB12) bionic enzyme-assisted ion-selective amperometric biosensor based on 3D porous conductive matrix (PCM), which can facilitate rapid and accurate POC nitrite monitoring in complex biofluids. The experimental findings quantitatively demonstrate that the biosensor has a sensitivity of 64.08 μA/(mM·cm2), a wide linear range of 0.025-45 mM, and low limit of detection of 1 nM. Moreover, the developed VB12/BSA-PCM biosensor shows outstanding stability after 21 days with 2% decline in current signal, and high repeatability between batches with RSD of only 1.29%. Real salivary nitrite detection has been evaluated, and the results match well with the commercial nitrite analyzer. Thus, the bionic enzyme-assisted ion-selective amperometric biosensor proposed herein has potential utility as an affordable tool for POC detection and home-based healthcare.
Collapse
Affiliation(s)
- Han Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xueqi Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Cheng
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| |
Collapse
|
8
|
Faradaic electrochemical impedimetric analysis on MoS2/Au-NPs decorated surface for C-reactive protein detection. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Liu X, Li Y, Ma J, Zheng J. High-sensitivity amperometric hydrazine sensor based on AuNPs decorated with hollow-structured copper molybdenum sulfide nanomaterials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Saha P, Akter R, Shah SS, Mahfoz W, Aziz MA, Ahammad AJS. Gold Nanomaterials and their Composites as Electrochemical Sensing Platforms for Nitrite Detection. Chem Asian J 2022; 17:e202200823. [PMID: 36039466 DOI: 10.1002/asia.202200823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/29/2022] [Indexed: 02/01/2023]
Abstract
Nitrite is one of the abundant toxic components existing in the environment and is likely to have a great potential to affect human health badly. For that reason, it has become crucial to build a reliable nitrite detection method. In recent years, several nitrite monitoring systems have been proposed. Compared with traditional analytical strategies, the electrochemical approach has a bunch of advantages, including low cost, rapid response, easy operation, simplicity, etc. In this case, noble metal nanomaterials, especially Au-based nanomaterials, have attracted attention in electrode modification because of higher catalytic activity, facile mass transfer, and broad active area for determining nitrite. This review is based on the state-of-the-art, which includes a variety of nanomaterials that have been coupled with AuNPs for the creation of nanocomposites, and the construction as well as development of electrochemical sensors for nitrite detection over the last few years (2016-2022). A background study on synthesizing different morphological AuNPs and nanocomposites has also been introduced. The fabrication methods and sensing capabilities of modified electrodes are given special consideration.
Collapse
Affiliation(s)
- Protity Saha
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| | - Riva Akter
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| | - Syed Shaheen Shah
- King Fahd University of Petroleum & Minerals, Physics Department, Building 6, 31261, Dhahran, SAUDI ARABIA
| | - Wael Mahfoz
- King Fahd University of Petroleum & Minerals, Chemistry, Chemistry Department, 31261, Dhahran, SAUDI ARABIA
| | - Md Abdul Aziz
- King Fahd University of Petroleum & Minerals, Center of Research excellence in Nanotechnology, KFUPM Box # 81, 31261, Dhahran, SAUDI ARABIA
| | - A J Saleh Ahammad
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| |
Collapse
|
11
|
Sun H, Li D, Yue X, Hong R, Yang W, Liu C, Xu H, Lu J, Dong L, Wang G, Li D. A Review of Transition Metal Dichalcogenides-Based Biosensors. Front Bioeng Biotechnol 2022; 10:941135. [PMID: 35769098 PMCID: PMC9234135 DOI: 10.3389/fbioe.2022.941135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metal dichalcogenides (TMDCs) are widely used in biosensing applications due to their excellent physical and chemical properties. Due to the properties of biomaterial targets, the biggest challenge that biosensors face now is how to improve the sensitivity and stability. A lot of materials had been used to enhance the target signal. Among them, TMDCs show excellent performance in enhancing biosensing signals because of their metallic and semi-conducting electrical capabilities, tunable band gap, large specific surface area and so on. Here, we review different functionalization methods and research progress of TMDCs-based biosensors. The modification methods of TMDCs for biosensor fabrication mainly include two strategies: non-covalent and covalent interaction. The article summarizes the advantages and disadvantages of different modification strategies and their effects on biosensing performance. The authors present the challenges and issues that TMDCs need to be addressed in biosensor applications. Finally, the review expresses the positive application prospects of TMDCs-based biosensors in the future.
Collapse
Affiliation(s)
- Hongyu Sun
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- *Correspondence: Dujuan Li, ; Dongyang Li,
| | - Xiaojie Yue
- The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Hong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Dongyang Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- *Correspondence: Dujuan Li, ; Dongyang Li,
| |
Collapse
|
12
|
Electrochemical sensor based on the polyoxometalate nanocluster [(NH4)12[Mo36(NO)4O108(H2O)16]·33H2O and molybdenum disulfide nanocomposite materials for simultaneous detection of dihydroxybenzene isomers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Li T, Shang D, Gao S, Wang B, Kong H, Yang G, Shu W, Xu P, Wei G. Two-Dimensional Material-Based Electrochemical Sensors/Biosensors for Food Safety and Biomolecular Detection. BIOSENSORS 2022; 12:314. [PMID: 35624615 PMCID: PMC9138342 DOI: 10.3390/bios12050314] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 05/28/2023]
Abstract
Two-dimensional materials (2DMs) exhibited great potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and others due to their unique physical, chemical, and biological properties. In this review, we present recent advances in the fabrication of 2DM-based electrochemical sensors and biosensors for applications in food safety and biomolecular detection that are related to human health. For this aim, firstly, we introduced the bottom-up and top-down synthesis methods of various 2DMs, such as graphene, transition metal oxides, transition metal dichalcogenides, MXenes, and several other graphene-like materials, and then we demonstrated the structure and surface chemistry of these 2DMs, which play a crucial role in the functionalization of 2DMs and subsequent composition with other nanoscale building blocks such as nanoparticles, biomolecules, and polymers. Then, the 2DM-based electrochemical sensors/biosensors for the detection of nitrite, heavy metal ions, antibiotics, and pesticides in foods and drinks are introduced. Meanwhile, the 2DM-based sensors for the determination and monitoring of key small molecules that are related to diseases and human health are presented and commented on. We believe that this review will be helpful for promoting 2DMs to construct novel electronic sensors and nanodevices for food safety and health monitoring.
Collapse
Affiliation(s)
- Tao Li
- College of Textile & Clothing, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China;
| | - Dawei Shang
- Qingdao Product Quality Testing Research Institute, No. 173 Shenzhen Road, Qingdao 266101, China;
| | - Shouwu Gao
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Bo Wang
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| | - Weidong Shu
- Qingdao Institute of Textile Fiber Inspection, No. 173 Shenzhen Road, Qingdao 266101, China; (B.W.); (W.S.)
| | - Peilong Xu
- State Key Laboratory, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (S.G.); (P.X.)
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; (H.K.); (G.Y.)
| |
Collapse
|
14
|
Han E, Zhang M, Pan Y, Cai J. Electrochemical Self-Assembled Gold Nanoparticle SERS Substrate Coupled with Diazotization for Sensitive Detection of Nitrite. MATERIALS 2022; 15:ma15082809. [PMID: 35454502 PMCID: PMC9028913 DOI: 10.3390/ma15082809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/16/2023]
Abstract
The accurate determination of nitrite in food samples is of great significance for ensuring people's health and safety. Herein, a rapid and low-cost detection method was developed for highly sensitive and selective detection of nitrite based on a surface-enhanced Raman scattering (SERS) sensor combined with electrochemical technology and diazo reaction. In this work, a gold nanoparticle (AuNP)/indium tin oxide (ITO) chip as a superior SERS substrate was obtained by electrochemical self-assembled AuNPs on ITO with the advantages of good uniformity, high reproducibility, and long-time stability. The azo compounds generated from the diazotization-coupling reaction between nitrite, 4-aminothiophenol (4-ATP), and N-(1-naphthyl) ethylenediamine dihydrochloride (NED) in acid condition were further assembled on the surface of AuNP/ITO. The detection of nitrite was realized using a portable Raman spectrometer based on the significant SERS enhancement of azo compounds assembled on the AuNP/ITO chip. Many experimental conditions were optimized such as the time of electrochemical self-assembly and the concentration of HAuCl4. Under the optimal conditions, the designed SERS sensor could detect nitride in a large linear range from 1.0 × 10-6 to 1.0 × 10-3 mol L-1 with a low limit of detection of 0.33 μmol L-1. Additionally, nitrite in real samples was further analyzed with a recovery of 95.1-109.7%. Therefore, the proposed SERS method has shown potential application in the detection of nitrite in complex food samples.
Collapse
Affiliation(s)
- En Han
- Correspondence: (E.H.); (J.C.)
| | | | | | | |
Collapse
|
15
|
Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Yang Y, Lei Q, Li J, Hong C, Zhao Z, Xu H, Hu J. Synthesis and enhanced electrochemical properties of AuNPs@MoS2/rGO hybrid structures for highly sensitive nitrite detection. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106904] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Theerthagiri J, Lee SJ, Karuppasamy K, Park J, Yu Y, Kumari MLA, Chandrasekaran S, Kim HS, Choi MY. Fabrication strategies and surface tuning of hierarchical gold nanostructures for electrochemical detection and removal of toxic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126648. [PMID: 34329090 DOI: 10.1016/j.jhazmat.2021.126648] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 05/20/2023]
Abstract
The intensive research on the synthesis and characterization of gold (Au) nanostructures has been extensively documented over the last decades. These investigations allow the researchers to understand the relationships between the intrinsic properties of Au nanostructures such as particle size, shape, morphology, and composition to synthesize the Au nano/hybrid nanostructures with novel physicochemical properties. By tuning the properties above, these nanostructures are extensively employed to detect and remove trace amounts of toxic pollutants from the environment. This review attempts to document the achievements and current progress in Au-based nanostructures, general synthetic and fabrication strategies and their utilization in electrochemical sensing and environmental remediation applications. Additionally, the applications of Au nanostructures (e.g., as adsorbents, sensing platforms, catalysts, and electrodes) and advancements in the field of electrochemical sensing of different target analytes (e.g., proteins, nucleic acids, heavy metals, small molecules, and antigens) are summarized. The literature survey concludes the existing methods for the detection of toxic contaminants at various concentration levels. Finally, the existing challenges and future research directions on electrochemical sensing and degradation of toxic contaminants using Au nanostructures are defined.
Collapse
Affiliation(s)
- Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Juhyeon Park
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Yiseul Yu
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - M L Aruna Kumari
- Department of Chemistry, M.S. Ramaiah College of Arts, Science and Commerce, Bengaluru 560054, India
| | - Sivaraman Chandrasekaran
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
18
|
Li Y, Geng C, Xu X, Lv X, Fang Y, Wang N, Yang Y, Cui B. Construction of polythiophene-derivative films as a novel electrochemical sensor for highly sensitive detection of nitrite. Anal Bioanal Chem 2021; 413:6639-6647. [PMID: 34595556 DOI: 10.1007/s00216-021-03630-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Herein, a novel, convenient, and highly selective electrochemical sensor for determination of nitrite based on a polythiophene-derivative film-modified glassy carbon electrode (GCE) was established. In this work, 2,5-di-thiophen-3-yl-thiazolo[5,4-d]thiazole (DTT), a novel thiophene derivative, was synthesized and used to form an original and excellent polymer film (PolyDTTF) on GCE through one-step electropolymerization for the first time. The modified electrodes were characterized by electron microscopy (SEM), Fourier transform infra-red spectroscopy (FT-IR), UV-visible spectra, Raman spectroscopy, and electrochemical technologies, in which the electrochemical sensor based on PolyDTTF was successfully constructed and demonstrated a significant electrocatalytic effect on nitrite. The influence of pH value, electrodeposition scanning times, scanning speed, and potential on the electrochemical behavior of nitrite were investigated in detail. Furthermore, the nitrite sensor exhibits excellent responses proportional to nitrite concentrations (R2 = 0.9972) over a concentration range of 5.5 × 10-9 ~ 3.5 × 10-5 M with a detection limit (LOD) of 2 nM, and has extremely good anti-interference ability for nitrite detection. This proposed sensor can be used to detect nitrite in actual samples, opening the possibility for applications in the food industry and environmental analysis.
Collapse
Affiliation(s)
- Yanping Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Xiaoyun Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Xiaoyi Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| | - Na Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China
| | - Yunjun Yang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, Shandong, China.
| |
Collapse
|
19
|
Anh NT, Dinh NX, Pham TN, Vinh LK, Tung LM, Le AT. Enhancing the chloramphenicol sensing performance of Cu-MoS 2 nanocomposite-based electrochemical nanosensors: roles of phase composition and copper loading amount. RSC Adv 2021; 11:30544-30559. [PMID: 35479872 PMCID: PMC9041121 DOI: 10.1039/d1ra06100c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
The rational design of nanomaterials for electrochemical nanosensors from the perspective of structure–property–performance relationships is a key factor in improving the analytical performance toward residual antibiotics in food. We have investigated the effects of the crystalline phase and copper loading amount on the detection performance of Cu–MoS2 nanocomposite-based electrochemical sensors for the antibiotic chloramphenicol (CAP). The phase composition and copper loading amount on the MoS2 nanosheets can be controlled using a facile electrochemical method. Cu and Cu2O nanoparticle-based electrochemical sensors showed a higher CAP electrochemical sensing performance as compared to CuO nanoparticles due to their higher electrocatalytic activity and conductivity. Moreover, the design of Cu–MoS2 nanocomposites with appropriate copper loading amounts could significantly improve their electrochemical responses for CAP. Under optimized conditions, Cu–MoS2 nanocomposite-based electrochemical nanosensor showed a remarkable sensing performance for CAP with an electrochemical sensitivity of 1.74 μA μM−1 cm−2 and a detection limit of 0.19 μM in the detection range from 0.5–50 μM. These findings provide deeper insight into the effects of nanoelectrode designs on the analytical performance of electrochemical nanosensors. In this work, we clarify the roles of phase composition and copper loading amount on the CAP sensing performance of Cu–MoS2 nanocomposite-based electrochemical nanosensors.![]()
Collapse
Affiliation(s)
- Nguyen Tuan Anh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ngo Xuan Dinh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Tuyet Nhung Pham
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Le Khanh Vinh
- Institute of Physics at Ho Chi Minh City, Vietnam Academy of Science and Technology (VAST) Ho Chi Minh 70000 Vietnam
| | - Le Minh Tung
- Department of Physics, Tien Giang University My Tho City Tien Giang Province Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam .,Faculty of Materials Science and Engineering, Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
20
|
Yang Y, Zhang J, Li YW, Shan Q, Wu W. Ni nanosheets evenly distributed on MoS2 for selective electrochemical detection of nitrite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Chen J, Li S, Xu F, Zhang Q. Electrochemical Probe of the Reduced Graphene Oxide Modified by Bare Gold Nanoparticles Functionalized Zr(IV)‐based Metal‐organic Framework for Detecting Nitrite. ELECTROANAL 2021. [DOI: 10.1002/elan.202100209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jing Chen
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Shuying Li
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Fanghong Xu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Qian Zhang
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
22
|
Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16962-16981. [PMID: 33638785 DOI: 10.1007/s11356-021-12996-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The production and demand of nanoparticles in the manufacturing sector and personal care products, release a large number of engineered nanoparticles (ENPs) into the atmosphere, aquatic ecosystems, and terrestrial environments. The intentional or involuntary incorporation of ENPs into the environment is carried out through different processes. The ENPs are combined with other compounds and release into the atmosphere, settling on the ground due to the water cycle or other atmospheric phenomena. In the case of aquatic ecosystems, the ENPs undergo hetero-aggregation and sedimentation, reaching different living organisms and flora, as well as groundwater. Accordingly, the high mobility of ENPs in diverse ecosystems is strongly related to physical, chemical, and biological processes. Recent studies have been focused on the toxicological effects of a wide variety of ENPs using different validated biological models. This literature review emphasizes the study of toxicological effects related to using the most common ENPs, specifically metal and metal/oxides-based nanoparticles, addressing different synthesis methodologies, applications, and toxicological evaluations. The results suggest negative impacts on biological models, such as oxidative stress, metabolic and locomotive toxicity, DNA replication dysfunction, and bioaccumulation. Finally, it was consulted the protocols for the control of risks, following the assessment and management process, as well as the classification system for technological alternatives and risk management measures of ENPs, which are useful for the transfer of technology and nanoparticles commercialization.
Collapse
Affiliation(s)
- Ricardo Solano
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - David Patiño-Ruiz
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Lesly Tejeda-Benitez
- Chemical Engineering Program, Process Design and Biomass Utilization Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia
| | - Adriana Herrera
- Engineering Doctorate Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
- Chemical Engineering Program, Nanomaterials and Computer-Aided Process Engineering Research Group, Universidad de Cartagena, Cartagena, 130010, Colombia.
| |
Collapse
|
23
|
Yang Z, Zhou X, Yin Y, Fang W. Determination of Nitrite by Noble Metal Nanomaterial-Based Electrochemical Sensors: A Minireview. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1897134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zhengfei Yang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyong Zhou
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongqi Yin
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Fang
- College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Arunbalaji S, Ismail MAM, Arivanandhan M, Alsalme A, Alghamdi A, Jayavel R. High Sensitive Electrochemical Nitrite Sensor Using Fe2O3/MoS2 Nanocomposites Synthesized by Facile Method. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Riyadh Province-11451, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Riyadh Province-11451, Saudi Arabia
| | - Ramasamy Jayavel
- Centre for Nanoscience and Technology, Anna University, Chennai-600 025, India
| |
Collapse
|
25
|
Curcumin graphite pencil electrode modified with molybdenum disulfide nanosheets decorated gold foams for simultaneous quantification of nitrite and hydrazine in water samples. Anal Chim Acta 2020; 1137:19-27. [DOI: 10.1016/j.aca.2020.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023]
|
26
|
Tajiki A, Abdouss M, Sadjadi S, Mazinani S. Voltammetric Detection of Nitrite Anions Employing Imidazole Functionalized Reduced Graphene Oxide as an Electrocatalyst. ELECTROANAL 2020. [DOI: 10.1002/elan.202060187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alireza Tajiki
- Department of Chemistry Amirkabir University of Technology No. 350, Hafez Ave., Valiasr Square Tehran 1591634311 Iran
| | - Majid Abdouss
- Department of Chemistry Amirkabir University of Technology No. 350, Hafez Ave., Valiasr Square Tehran 1591634311 Iran
| | - Sodeh Sadjadi
- Radiation Application Research School Nuclear Science and Technology Research Institute Tehran Iran
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC) Amirkabir University of Technology Tehran Iran
| |
Collapse
|
27
|
Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite. Mikrochim Acta 2020; 187:572. [PMID: 32940777 DOI: 10.1007/s00604-020-04545-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023]
Abstract
Gold nanoparticles (AuNPs) decorated bimetallic CuNi-based hollow nanoarchitecture (CNHN) are reported for the first time as a nonenzymatic sensor for the quantification of nitrite in neutral solution . The CNHN was prepared via a convenient calcining routine using the bimetallic CuNi-MOFs as a coprecursor. The unique chemical structure of hollow CNHN with high specific surface area and abundant terminal amino groups effectively avoid the aggregation of AuNPs and facilitate the subsequent adsorption of nitrite. The Au/CNHN exhibited high electrocatalytic activity towards nitrite oxidation due to the synergetic catalytic effect of AuNPs and CNHN. Chronoamperometric detection of nitrite at the Au/CNHN/GCE achieved a lower linear calibration range of 0.05 to 1.15 mM, with an LOD of 0.017 μM compared with previous reports. The proposed method obtained satisfactory recoveries for nitrite determination in practical applications, which was verified by UV-Vis spectrophotometry. The prepared sensor based on Au/CNHN featured favorable selectivity and stability, which provides a promising approach for real sample analysis. Graphical abstract.
Collapse
|
28
|
Sha R, Bhattacharyya TK. MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136370] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Li S, Wang T, Yue R, Wang H, Bai Q, Xiao H, Sui N, Wang L, Liu M, Yu WW. PdFe Ultrathin Nanosheets for Highly Sensitive Detection of Nitrite. ELECTROANAL 2019. [DOI: 10.1002/elan.201900589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shuai Li
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Tao Wang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ruiping Yue
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Hongshuai Wang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Qiang Bai
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Hailian Xiao
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Ning Sui
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Lina Wang
- College of Environment and Safety Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Manhong Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - William W. Yu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China
- Department of Chemistry and Physics Louisiana State University Shreveport, LA 71115 USA
| |
Collapse
|
30
|
Mohammadniaei M, Nguyen HV, Tieu MV, Lee MH. 2D Materials in Development of Electrochemical Point-of-Care Cancer Screening Devices. MICROMACHINES 2019; 10:E662. [PMID: 31575012 PMCID: PMC6843145 DOI: 10.3390/mi10100662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Effective cancer treatment requires early detection and monitoring the development progress in a simple and affordable manner. Point-of care (POC) screening can provide a portable and inexpensive tool for the end-users to conveniently operate test and screen their health conditions without the necessity of special skills. Electrochemical methods hold great potential for clinical analysis of variety of chemicals and substances as well as cancer biomarkers due to their low cost, high sensitivity, multiplex detection ability, and miniaturization aptitude. Advances in two-dimensional (2D) material-based electrochemical biosensors/sensors are accelerating the performance of conventional devices toward more practical approaches. Here, recent trends in the development of 2D material-based electrochemical biosensors/sensors, as the next generation of POC cancer screening tools, are summarized. Three cancer biomarker categories, including proteins, nucleic acids, and some small molecules, will be considered. Various 2D materials will be introduced and their biomedical applications and electrochemical properties will be given. The role of 2D materials in improving the performance of electrochemical sensing mechanisms as well as the pros and cons of current sensors as the prospective devices for POC screening will be emphasized. Finally, the future scopes of implementing 2D materials in electrochemical POC cancer diagnostics for the clinical translation will be discussed.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| |
Collapse
|