1
|
Wahid AA, Usman M, Haleem YA, Ahmed A, Raza K, Munir MU, Pan L, Khan A. Fabrication of a graphene@Ni foam-supported silver nanoplates-PANI 3D architecture electrode for enzyme-free glucose sensing. NANOTECHNOLOGY 2024; 35:495501. [PMID: 39284312 DOI: 10.1088/1361-6528/ad7b41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Reliable and cost-effective glucose sensors are in rising demand among diabetes patients. The combination of metals and conducting polymers creates a robust electrocatalyst for glucose oxidation, offering enzyme-free, high stability, and sensitivity with outstanding electrochemical results. Herein, graphene is grown on nickel foam by chemical vapor deposition to make a graphene@nickel foam scaffold (G@NF), on which silver nanoplates-polyaniline (Ag-PANI) 3D architecture is developed by sonication-assisted co-electrodeposition. The resulting binder-free 3D Ag-PANI/G@NF electrode was highly porous, as characterized by x-ray photoelectron spectroscopy, Field emission scanning electron microscope, x-ray diffractometer, FTIR, and Raman spectroscopy. The binder-free 3D Ag-PANI/G@NF electrode exhibits remarkable electrochemical efficiency with a superior electrochemical active surface area. The amperometric analysis provides excellent anti-interference performance, a low limit of deduction (0.1 nM), robust sensitivity (1.7 × 1013µA mM-1cm-2), and a good response time. Moreover, the Ag-PANI/G@NF enzyme-free sensor is utilized to observe glucose levels in human blood serums and exhibits excellent potential to become a reliable clinical glucose sensor.
Collapse
Affiliation(s)
- Ahtisham Abdul Wahid
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Usman
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Yasir A Haleem
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Arsalan Ahmed
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Pakistan
| | - Kabeer Raza
- Institute of Metallurgy and Materials Engineering, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lujan Pan
- School of Physics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Aslam Khan
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| |
Collapse
|
2
|
Li H, Xiao N, Jiang M, Long J, Li Z, Zhu Z. Advances of Transition Metal-Based Electrochemical Non-enzymatic Glucose Sensors for Glucose Analysis: A Review. Crit Rev Anal Chem 2024:1-37. [PMID: 38635407 DOI: 10.1080/10408347.2024.2339955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Glucose concentration is a crucial parameter for assessing human health. Over recent years, non-enzymatic electrochemical glucose sensors have drawn considerable attention due to their substantial progress. This review explores the common mechanism behind the transition metal-based electrocatalytic oxidation of glucose molecules through classical electrocatalytic frameworks like the Pletcher model and the Hydrous Oxide-Adatom Mediator model (IHOAM), as well as the redox reactions at the transition metal centers. It further compiles the electrochemical characterization techniques, associated formulas, and their ensuing conclusions pertinent to transition metal-based non-enzymatic electrochemical glucose sensors. Subsequently, the review covers the latest advancements in the field of transition metal-based active materials and support materials used in non-enzymatic electrochemical glucose sensors in the last decade (2014-2023). Additionally, it presents a comprehensive classification of representative studies according to the active metal catalysts components involved.
Collapse
Affiliation(s)
- Haotian Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Nan Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengyi Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjun Long
- Danyang Development Zone, Jiangsu Yuwell-POCT Biological Technology Co., Ltd, Danyang, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Tonelli D, Gualandi I, Scavetta E, Mariani F. Focus Review on Nanomaterial-Based Electrochemical Sensing of Glucose for Health Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1883. [PMID: 37368313 DOI: 10.3390/nano13121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Diabetes management can be considered the first paradigm of modern personalized medicine. An overview of the most relevant advancements in glucose sensing achieved in the last 5 years is presented. In particular, devices exploiting both consolidated and innovative electrochemical sensing strategies, based on nanomaterials, have been described, taking into account their performances, advantages and limitations, when applied for the glucose analysis in blood and serum samples, urine, as well as in less conventional biological fluids. The routine measurement is still largely based on the finger-pricking method, which is usually considered unpleasant. In alternative, glucose continuous monitoring relies on electrochemical sensing in the interstitial fluid, using implanted electrodes. Due to the invasive nature of such devices, further investigations have been carried out in order to develop less invasive sensors that can operate in sweat, tears or wound exudates. Thanks to their unique features, nanomaterials have been successfully applied for the development of both enzymatic and non-enzymatic glucose sensors, which are compliant with the specific needs of the most advanced applications, such as flexible and deformable systems capable of conforming to skin or eyes, in order to produce reliable medical devices operating at the point of care.
Collapse
Affiliation(s)
- Domenica Tonelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
4
|
Farid A, Khan AS, Javid M, Usman M, Khan IA, Ahmad AU, Fan Z, Khan AA, Pan L. Construction of a binder-free non-enzymatic glucose sensor based on Cu@Ni core-shell nanoparticles anchored on 3D chiral carbon nanocoils-nickel foam hierarchical scaffold. J Colloid Interface Sci 2022; 624:320-337. [PMID: 35660901 DOI: 10.1016/j.jcis.2022.05.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 01/09/2023]
Abstract
Bimetallic nanostructures composited with carbonaceous materials are the potential contenders for quantitative glucose measurement owing to their unique nanostructures, high biomimetic activity, synergistic effects, good conductivity and chemical stability. In the present work, chemical vapors deposition technique has been employed to grow 3D carbon nanocoils (CNCs) with a chiral morphology on hierarchical macroporous nickel foam (NF) to get a CNCs/NF scaffold. Following, bimetallic Cu@Ni core-shell nanoparticles (CSNPs) are effectively coupled with this scaffold through a facile solvothermal route in order to fabricate a binder-free novel Cu@Ni CSNPs/CNCs/NF hybrid nanostructure. The constructed free-standing 3D hierarchical composite electrode guarantees highly efficient glucose redox activity due to core-shell synergistic effects, enhanced electrochemical active surface area, excellent electrochemical stability, improved conductivity with better ion diffusivity and accelerated reaction kinetics. Being a non-enzymatic glucose sensor, this electrode achieves highly swift response time of 0.1 s, ultra-high sensitivity of 6905 μA mM-1 cm-2, low limit of detection of 0.03 μM along with potential selectivity and good storage stability. Moreover, the proposed sensor is also tested successfully for the determination of glucose concentration in human serum samples under good recovery ranging from 96.6 to 102.1 %. The 3D Cu@Ni CSNPs/CNCs/NF composite electrode with unprecedented catalytic performance can be utilized as an ideal biomimetic catalyst in the field of non-enzymatic glucose sensing.
Collapse
Affiliation(s)
- Amjad Farid
- School of Physics, Dalian University of Technology, Dalian 116024, PR China; Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abdul Sammed Khan
- School of Physics, Dalian University of Technology, Dalian 116024, PR China
| | - Muhammad Javid
- School of Physics, Dalian University of Technology, Dalian 116024, PR China
| | - Muhammad Usman
- Department of Physics, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ijaz Ahmad Khan
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Aqrab Ul Ahmad
- Department of Physics, Riphah International University Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Zeng Fan
- School of Physics, Dalian University of Technology, Dalian 116024, PR China
| | - Aqib Ali Khan
- Department of Physics, Islamia College Peshawar, Peshawar 25120, KP, Pakistan
| | - Lujun Pan
- School of Physics, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
5
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Dendritic Cu(OH)2 nanostructures decorated pencil graphite electrode as a highly sensitive and selective impedimetric non-enzymatic glucose sensor in real human serum blood samples. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-021-02883-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Aun TT, Salleh NM, Ali UFM, Manan NSA. Non-Enzymatic Glucose Sensors Involving Copper: An Electrochemical Perspective. Crit Rev Anal Chem 2021; 53:537-593. [PMID: 34477020 DOI: 10.1080/10408347.2021.1967720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.
Collapse
Affiliation(s)
- Tan Tiek Aun
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noordini Mohamad Salleh
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Science, Department of Chemistry, Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umi Fazara Md Ali
- Chemical Engineering Programme, Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia.,Centre of Excellence for Biomass Utilization (COEBU), Universiti Malaysia Perlis, Arau, Malaysia
| | - Ninie Suhana Abdul Manan
- Faculty of Science, Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia.,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Microwave-assisted decoration of cotton fabrics with Nickel-Cobalt sulfide as a wearable glucose sensing platform. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1920-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Jiang M, Sun P, Zhao J, Huo L, Cui G. A Flexible Portable Glucose Sensor Based on Hierarchical Arrays of Au@Cu(OH) 2 Nanograss. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5055. [PMID: 31752431 PMCID: PMC6891777 DOI: 10.3390/s19225055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/09/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022]
Abstract
Flexible physiological medical devices have gradually spread to the lives of people, especially the elderly. Here, a flexible integrated sensor based on Au nanoparticle modified copper hydroxide nanograss arrays on flexible carbon fiber cloth (Au@Cu(OH)2/CFC) is fabricated by a facile electrochemical method. The sensor possesses ultrahigh sensitivity of 7.35 mA mM-1 cm-2 in the linear concentration range of 0.10 to 3.30 mM and an ultralow detection limit down to 26.97 nM. The fantastic sensing properties can be ascribed to the collective effect of the superior electrochemical catalytic activity of nanograss arrays with dramatically enhanced electrochemically active surface area as well as mass transfer ability when modified with Au and intimate contact between the active material (Au@Cu(OH)2) and current collector (CFC), concurrently supplying good conductivity for electron/ion transport during glucose biosensing. Furthermore, the device also exhibits excellent anti-interference and stability for glucose detection. Owing to the distinguished performances, the novel sensor shows extreme reliability for practical glucose testing in human serum and juice samples. Significantly, these unique properties and the soft structure of silk fabric can provide a promising structure design for a flexible micro-device and a great potential material candidate of electrochemical glucose sensor.
Collapse
Affiliation(s)
- Min Jiang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Peng Sun
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, 135, Xingang West Road, Guangzhou 510275, China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, 135, Xingang West Road, Guangzhou 510275, China
| |
Collapse
|