1
|
Tang W, Liu W, Li Z, Liu K, Jiang T, Wang S, Qu K, Li J, Zhang X, Zhu Y. Sensitive detection of persulfate by a novel self-powered electrochemical sensor with carbon cloth electrodes modified with tin-doped cobalt tetroxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60451-60464. [PMID: 39379657 DOI: 10.1007/s11356-024-35214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
The accurate and rapid detection of persulfate concentration is important for environmental decontamination and human health protection. In this work, a novel self-powered electrochemical sensor for the sensitive monitoring of persulfate was developed, which utilized cobalt tetroxide (Co3O4@CC) or tin-doped cobalt tetroxide (SnxCo3-xO4@CC) cathode as the sensing element and anode with electrogenic microorganisms as the power supplier. The Co3O4@CC and SnxCo3-xO4@CC electrodes were fabricated by in situ growing nanostructured Co3O4 or SnxCo3-xO4 catalysts on carbon cloth. Electrochemical tests revealed that these electrodes exhibited excellent catalytic reduction performance toward persulfate because of the synergistic catalysis by Co3O4 and electrode electrons, well-exposed Co2+/Co3+ catalytic sites, and high electron transfer efficiency. Tin doping could enhance the catalytic persulfate reduction by improving the conductivity and electron transfer of the Co3O4 catalyst. The electrode prepared at a hydrothermal temperature of 90 °C and a tin dosage of 0.286 g·cm-2 achieved the highest persulfate reduction activity under pH 7. The sensing properties of the self-powered sensors toward persulfate were explored in detail. Results showed that under the optimal external load of 300 Ω, the proposed sensor could display a broad detection range of 0 to 1500 μmol L-1 K2S2O8 with sensitivities of 1.13 and 0.12 μA μmol-1 L, a detection limit of 1.11 μmol L-1 (S/N = 3), and a fast response time within 30 s. The sensors also presented satisfactory reproducibility and selectivity during the detection of persulfate. The proposed sensor will provide a new approach for sensitive, on-site, and real-time monitoring of persulfate for a wide range of applications.
Collapse
Affiliation(s)
- Wanting Tang
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Weifeng Liu
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China.
| | - Zhe Li
- Baowu Group Environmental Resources Technology Co. Ltd, Shanghai, 201900, China
| | - Ke Liu
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Tao Jiang
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Shanhui Wang
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Kai Qu
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Jiayi Li
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Xingzhu Zhang
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| | - Yimin Zhu
- Institute of Environmental Remediation, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, People's Republic of China
| |
Collapse
|
2
|
Xiong Y, Zhu S, Zhao H, Li J, Li Y, Gong T, Tao Y, Hu J, Wang H, Jiang X. An electrochemical sensor based on CS-MWCNT and AuNPs for the detection of mycophenolic acid in plasma. Anal Biochem 2023; 677:115265. [PMID: 37499894 DOI: 10.1016/j.ab.2023.115265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
For patients receiving organ transplants, monitoring the blood concentration of MPA can provide timely information on whether MPA has reached the effective therapeutic window to better function while reducing the incidence of rejection or adverse reactions. In this study, an electrochemical sensor for the detection of MPA was built using a nanocomposite made of CS-MWCNT and AuNPs. At the same time, the high performance liquid phase (HPLC) method for MPA was established and compared with this sensor. The surface morphology, structure, and roughness of the material on the electrode were characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and atomic force microscopy (AFM). In addition, the electrochemical behavior of the modified electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The standard curve was obtained in blank plasma, not pure buffer solution. The peak current was linearly related to the MPA concentration in the linear range of 0.001-0.1 mM with a detection limit of 0.05 μM and good anti-interference ability. Moreover, the sensor was employed with success for the determination of MPA in rat plasma with good recovery. The electrochemical sensor presented here is eco-friendly, and sensitive, and offers a great possibility for practical applicability.
Collapse
Affiliation(s)
- Yan Xiong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shu Zhu
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hua Zhao
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jin Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Department of Pharmacy, Children's Hospital Affiliated to Chongqing Medical University, Chongqing, 400014, China
| | - Yanting Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Tao Gong
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yanru Tao
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jiangling Hu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Hongmei Wang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Fu an Pharmaceutical Group Chongqing Lybon Pharm-Tech Co.,Ltd, Chongqing, 401121, China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Medvedeva AS, Dyakova EI, Kuznetsova LS, Mironov VG, Gurkin GK, Rogova TV, Kharkova AS, Melnikov PV, Naumova AO, Butusov DN, Arlyapov VA. A Two-Mediator System Based on a Nanocomposite of Redox-Active Polymer Poly(thionine) and SWCNT as an Effective Electron Carrier for Eukaryotic Microorganisms in Biosensor Analyzers. Polymers (Basel) 2023; 15:3335. [PMID: 37631392 PMCID: PMC10459408 DOI: 10.3390/polym15163335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Electropolymerized thionine was used as a redox-active polymer to create a two-mediated microbial biosensor for determining biochemical oxygen demand (BOD). The electrochemical characteristics of the conducting system were studied by cyclic voltammetry and electrochemical impedance spectroscopy. It has been shown that the most promising in terms of the rate of interaction with the yeast B. adeninivorans is the system based on poly(thionine), single-walled carbon nanotubes (SWCNT), and neutral red (kint = 0.071 dm3/(g·s)). The biosensor based on this system is characterized by high sensitivity (the lower limit of determined BOD concentrations is 0.4 mgO2/dm3). Sample analysis by means of the developed analytical system showed that the results of the standard dilution method and those using the biosensor differed insignificantly. Thus, for the first time, the fundamental possibility of effectively using nanocomposite materials based on SWCNT and the redox-active polymer poly(thionine) as one of the components of two-mediator systems for electron transfer from yeast microorganisms to the electrode has been shown. It opens up prospects for creating stable and highly sensitive electrochemical systems based on eukaryotes.
Collapse
Affiliation(s)
- Anastasia S. Medvedeva
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Elena I. Dyakova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Lyubov S. Kuznetsova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Vladislav G. Mironov
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - George K. Gurkin
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Tatiana V. Rogova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Anna S. Kharkova
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| | - Pavel V. Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Alina O. Naumova
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia
| | - Denis N. Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
| | - Vyacheslav A. Arlyapov
- Research Center “BioChemTech”, Tula State University, 92 Lenin Avenue, 300012 Tula, Russia
| |
Collapse
|
4
|
Shi Z, Hu B, Ge S, Chi B, Yan X, Zheng X. Facile preparation of bimetallic Au-Cu nanoclusters as fluorescent nanoprobes for sensitive detection of Cr 3+ and S 2O 82- ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122855. [PMID: 37301031 DOI: 10.1016/j.saa.2023.122855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Metallic nanoclusters (NCs) have attracted special attention from researchers due to their interesting optical properties. In this experiment, we proposed a facile one-step method for the synthesis of bimetallic gold-copper nanoclusters (AuCuNCs). The prepared AuCuNCs were characterized by fluorescence spectroscopy (FL), UV-vis absorption spectrum, transmission electron microscopy (TEM), etc. The emission peak of the prepared AuCuNCs was located at 455 nm and showed blue luminescence under the excitation of 365 nm UV light. Furthermore, after the addition of Cr3+ and S2O82- ions, the FL emission intensity of AuCuNCs was significantly reduced at 455 nm and there was a color change of diminished blue luminescence under UV lamp. The AuCuNCs exhibited excellent linearity and sensitivity for the detection of Cr3+ and S2O82- ions. The limits of detection (LOD) for the Cr3+ and S2O82- ions were calculated to be 1.5 and 0.037 μM, respectively. Finally, the recoveries of Cr3+ and S2O82- ions in Runxi Lake and tap water were measured by standard addition recovery test and were 96.66 ∼ 116.29 %, 95.75 ∼ 119.4 %.
Collapse
Affiliation(s)
- Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Bangyang Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shengya Ge
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiluan Yan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; College of Pharmacy, Nanchang University, Nanchang 330031, China.
| | - Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Chen J, Guo Y, Zhang X, Liu J, Gong P, Su Z, Fan L, Li G. Emerging Nanoparticles in Food: Sources, Application, and Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3564-3582. [PMID: 36791411 DOI: 10.1021/acs.jafc.2c06740] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoparticles (NPs) are small-sized, with high surface activity and antibacterial and antioxidant properties. As a result, some NPs are used as functional ingredients in food additives, food packaging materials, nutrient delivery, nanopesticides, animal feeds, and fertilizers to improve the bioavailability, quality, and performance complement or upgrade. However, the widespread use of NPs in the industry increases the exposure risk of NPs to humans due to their migration from the environment to food. Nevertheless, some NPs, such as carbon dots, NPs found in various thermally processed foods, are also naturally produced from the food during food processing. Given their excellent ability to penetrate biopermeable barriers, the potential safety hazards of NPs on human health have attracted increased attention. Herein, three emerging NPs are introduced including carbon-based NPs (e.g., CNTs), nanoselenium NPs (SeNPs), and rare earth oxide NPs (e.g., CeO2 NPs). In addition, their applications in the food industry, absorption pathways into the human body, and potential risk mechanisms are discussed. Challenges and prospects for the use of NPs in food are also proposed.
Collapse
Affiliation(s)
- Jian Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Xianlong Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Lihua Fan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| |
Collapse
|
6
|
Kalogerakis GC, Boparai HK, Yang MI, Sleep BE. A high-throughput and cost-effective microplate reader method for measuring persulfates (peroxydisulfate and peroxymonosulfate). Talanta 2021; 240:123170. [PMID: 35007773 DOI: 10.1016/j.talanta.2021.123170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Frequent use of persulfates as oxidants, for in situ chemical oxidation and advanced oxidation processes, warrants the need for developing a fast and efficient method for measuring persulfate concentrations in aqueous samples in the lab and on site. Here, we propose a modified method, based on Liang et al.'s (2008) spectrophotometric method, for measuring both peroxydisulfate (PDS) and peroxymonosulfate (PMS) in the aqueous samples. Our method involves a deep 96-well plate, multi-channel pipettes, a small orbital shaker, and a microplate reader; allowing the preparation and analysis of up to 96 samples in one run. Our proposed method shortens the time by 10 folds, consumes only ∼2% of the original reagents, and generates only ∼2% of the liquid waste compared to the Liang et al.'s method, thus, making our method high-throughput, time-efficient, and cost-effective with reduced environmental impact. The presented microplate reader method is validated in terms of linearity, LOD, LOQ, accuracy, precision, robustness, and selectivity. All the parameters satisfied the acceptance criteria, according to ICH guidelines. The linearity of calibration curves was evaluated by performing the F-test. In general, our method has linear ranges from 20 to 42,000 and 5 to 40,960 μM for PDS and PMS, respectively. Accuracy (% recovery) results suggested that the LOD and LOQ based on the standard deviation of y-intercepts of the regression lines were the most reliable. The LOD/LOQ values for PDS and PMS were 14.7/44.1 and 4.6/14.4 μM, respectively. The proposed method was also modified to work with a standard cuvette spectrophotometer and was validated. A comparison with the UHPLC analysis of PDS showed that our microplate reader method performed equivalently or even outperformed the UHPLC method, in the presence of common groundwater constituents and organic contaminants.
Collapse
Affiliation(s)
- Georgina C Kalogerakis
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Hardiljeet K Boparai
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Minqing Ivy Yang
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Brent E Sleep
- Department of Civil & Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
7
|
Rahmati Z, Roushani M, Hosseini H. Thionine functionalized hollow N-doped carbon nanoboxes: As a high-performance substrate for fabrication of label-free electrochemical aptasensor toward ultrasensitive detection of carcinoembryonic antigen. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Chicken feet yellow membrane/over-oxidized carbon paste electrodes: A novel electrochemical platform for determination of vitamin C. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Dai L, Xu J, Lin J, Wu L, Cai H, Zou J, Ma J. Iodometric spectrophotometric determination of peroxydisulfate in hydroxylamine-involved AOPs: 15 min or 15 s for oxidative coloration? CHEMOSPHERE 2021; 272:128577. [PMID: 34756344 DOI: 10.1016/j.chemosphere.2020.128577] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 06/13/2023]
Abstract
In this study, iodometric spectrophotometry, the most-used method for detecting peroxydisulfate (PDS), was modified by increasing the concentration of potassium iodide (KI) for realizing the immediate PDS determination and avoiding the interference of hydroxylamine. Kinetic studies showed that the reaction between PDS and I- to generate the yellow-colored I3- followed the kinetic equation as [Formula: see text] . Detection time of the iodometric spectrophotometry was shortened from 15 min to 15 s when KI concentration was increased from 0.6 M to 4.8 M. Different with the previous iodometric spectrophotometry, the modified method using 4.8 M KI as the indicator was well tolerable to the interference of hydroxylamine at acidic pH conditions. The calibration curve of the modified method showed a well linear relationship (R2 = 0.999) between the absorbance of I3- at 352 nm and PDS concentration in the range of 0-80 μM. The modified method was highly sensitive with the absorptivity of 2.5 × 104 M-1 cm-1 and the limit of detection of 0.11 μM. Moreover, the modified method was successfully applied for monitoring the change of PDS concentration during the degradation of diclofenac with four different PDS-based AOPs, the calculated reaction stoichiometric efficiency (RSE(%)=DiclofenacdegradedPDSconsumed×100%) followed the order as heat/PDS system > hydroxylamine/Fe2+/PDS system > hydroxylamine/Cu2+/PDS system > Fe2+/PDS system.
Collapse
Affiliation(s)
- Lin Dai
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Jiaxin Xu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Jinbin Lin
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Lingbin Wu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Huahua Cai
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jing Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| |
Collapse
|
10
|
Marangoni Júnior L, Vieira RP, Jamróz E, Anjos CAR. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr Polym 2021; 252:117221. [DOI: 10.1016/j.carbpol.2020.117221] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
|
11
|
Annu, Raja AN. Recent development in chitosan-based electrochemical sensors and its sensing application. Int J Biol Macromol 2020; 164:4231-4244. [DOI: 10.1016/j.ijbiomac.2020.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
|
12
|
Cui X, Liu X, Lin C, He M, Ouyang W. Activation of peroxymonosulfate using drinking water treatment residuals modified by hydrothermal treatment for imidacloprid degradation. CHEMOSPHERE 2020; 254:126820. [PMID: 32320832 DOI: 10.1016/j.chemosphere.2020.126820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, water treatment residuals (WTRs), a safe and valuable by-product containing iron, was used as a precursor for preparing effective activator (HWTRs) of peroxymonosulfate (PMS) for imidacloprid (IMD) degradation by hydrothermal treatment. Several affecting parameters on IMD degradation including PMS concentration, HWTRs dosage, initial pH and water matrix were discussed. The results of degradation experiments demonstrated that within the reaction time of 4 h, 97.64% of IMD could be removed with 0.5 g L-1 HWTRs and 1.5 mM PMS, and the acidic conditions were favorable for IMD degradation. Both sulfate radicals (SO4•-) and hydroxyl radicals (·OH) were generated to attack the target pollutant IMD, and ·OH was the dominating radical in the HWTRs/PMS system, which was confirmed by the results of radicals scavenging experiments, electron spin-resonance spectroscopy (ESR) tests and quantitative analysis. What's more, X-ray photoelectron (XPS) spectroscopy was used to further verify the activation mechanism. Consequently, the activation by Fe(II) on the surface of HWTRs might dominate the reaction was confirmed. In addition, the possible degradation pathways of IMD were proposed on the basis of the degradation intermediates identified by LC-MS. This study offers an innovative idea for modifying raw WTRs to prepare efficient catalysts to activate PMS under relatively mild conditions.
Collapse
Affiliation(s)
- Xiaoling Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Jamróz E, Khachatryan G, Kopel P, Juszczak L, Kawecka A, Krzyściak P, Kucharek M, Bębenek Z, Zimowska M. Furcellaran nanocomposite films: The effect of nanofillers on the structural, thermal, mechanical and antimicrobial properties of biopolymer films. Carbohydr Polym 2020; 240:116244. [DOI: 10.1016/j.carbpol.2020.116244] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
|