1
|
Pang X, Liu W, Zheng Z, Zheng X, Wang J, Wang Q, Niu L, Gao F. Hybridization-driven synchronous regeneration of biosensing interfaces for Listeria monocytogenes based on recognition of fullerol to single- and double-stranded DNA. Food Chem 2024; 461:140906. [PMID: 39173262 DOI: 10.1016/j.foodchem.2024.140906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
A novel sensitive and reusable electrochemical biosensor for Listeria monocytegenes DNA has been constructed based on the recognition of water-soluble hydroxylated fullerene (fullerol) to single- and double-stranded DNA. First, the fullerol was electrodeposited on glassy carbon electrode (GCE), acting as a matrix for non-covalent adsorption of single-stranded probe DNA. Upon hybridization with the target DNA, the double helix structure was formed and desorbed from the electrode surface, driving synchronous regeneration of the biosensing interfaces. The biosensor showed a probe DNA loading density of 144 pmol∙cm-2 with the hybridization efficiency of 72.2%. The biosensor is applicable for the analysis of target DNA in actual milk samples with recoveries between 101.0% and 104.0%. This sensing platform provides a simple method for the construction of sensitive and reusable biosensor to monitor Listeria monocytogenes-related food pollution.
Collapse
Affiliation(s)
- Xiangkun Pang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Wenjie Liu
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Zhenan Zheng
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Xuan Zheng
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Jiaai Wang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China
| | - Qingxiang Wang
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China.
| | - Li Niu
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China; Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Feng Gao
- The department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China.
| |
Collapse
|
2
|
Piao M, Zhang J, Du H, Du H, Sun Y, Teng H. Cerium added corn-based biochar as particle electrode for electrochemical oxidation industrial wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:4598-4606. [PMID: 37727140 DOI: 10.1080/09593330.2023.2260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
Three-dimensional (3D) electrochemical oxidation has become a popular advanced oxidation technology for wastewater treatment due to its various benefits. In this study, cerium (Ce) loaded biochar (Ce/BC) was used as a particle electrode to conduct the degradation of industrial wastewater released by the chemical industry. SEM, EDS, XRD, FTIR, XPS, and BET were used to characterize the properties of Ce/BC. The effects of some variables, including Ce loading (0-5%), pH (5-9), Ce/BC dosage (12.5-50.0 g/L), and working voltage (12-20 V), were evaluated with regard to COD elimination. The kinetics of COD oxidation and the energy consumption were carefully investigated. Tert-butanol significantly reduced the removal efficiency of COD, indicating that hydroxyl radicals generated during the process rather than direct electro-oxidation were the main mechanism for COD degradation. The treatment of industrial wastewater might benefit from the use of Ce/BC as particle electrode.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Jing Zhang
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Huishi Du
- College of Tourism and Geographical Science, Jilin Normal University, Siping, People's Republic of China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, People's Republic of China
- College of Engineering, Jilin Normal University, Siping, People's Republic of China
| |
Collapse
|
3
|
Yu X, Bai S, Wang L. In situ reduction of gold nanoparticles-decorated MXenes-based electrochemical sensing platform for KRAS gene detection. Front Bioeng Biotechnol 2023; 11:1176046. [PMID: 37008032 PMCID: PMC10063977 DOI: 10.3389/fbioe.2023.1176046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
In this work, gold nanoparticles@Ti3C2 MXenes nanocomposites with excellent properties were combined with toehold-mediated DNA strand displacement reaction to construct an electrochemical circulating tumor DNA biosensor. The gold nanoparticles were synthesized in situ on the surface of Ti3C2 MXenes as a reducing and stabilizing agent. The good electrical conductivity of the gold nanoparticles@Ti3C2 MXenes composite and the nucleic acid amplification strategy of enzyme-free toehold-mediated DNA strand displacement reaction can be used to efficiently and specifically detect the non-small cell cancer biomarker circulating tumor DNA KRAS gene. The biosensor has a linear detection range of 10 fM −10 nM and a detection limit of 0.38 fM, and also efficiently distinguishes single base mismatched DNA sequences. The biosensor has been successfully used for the sensitive detection of KRAS gene G12D, which has excellent potential for clinical analysis and provides a new idea for the preparation of novel MXenes-based two-dimensional composites and their application in electrochemical DNA biosensors.
Collapse
|
4
|
Liu L, Chang Y, Ji X, Chen J, Zhang M, Yang S. Surface-tethered electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions. Talanta 2023; 253:123597. [PMID: 35710468 DOI: 10.1016/j.talanta.2022.123597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/02/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
The general electrochemical biosensors for telomerase detection require the immobilization of primers on the electrode surface for telomeric extension and hybridization reactions. However, immobilization of primers may suffer from the challenges of hindrance effect and configuration freedom, thus reducing the extension and hybridization efficiency. Herein, we developed a sensitive electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions and surface-tethered detection. In the presence of telomerase, the biotinylated primer (bio-primer) was efficiently elongated with telomeric repeats of (TTAGGG)n at the 3' end in solution. Then, the extension product (bio-DNA) was hybridized with the signal probe DNA modified on the surface of ferrocene (Fc)-capped gold nanoparticle (AuNP). The bio-DNA/DNA/Fc-AuNP hybrids were then tethered by streptavidin-modified electrodes through the specific avidin-biotin interactions, thus producing strong electrochemical signals from the oxidation of Fc tags. The biosensor was successfully used to determine telomerase in HeLa cells and monitor the inhibition efficiency of inhibitor. A wide linear range for the detection of telomerase extracted from HeLa cells was attained. This method has great potential in clinical diagnosis and anti-cancer drug development, and should be beneficial for the fabrication of novel biosensors by integration of homogeneous catalysis and hybridization reactions.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xingyue Ji
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Jiayu Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Mengyu Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Suling Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| |
Collapse
|