1
|
Sun M, Chu S, Sun Z, Jiao X, Wang L, Li Z, Jiang L. A review of etching methods and applications of two-dimensional MXenes. NANOTECHNOLOGY 2024; 35:382003. [PMID: 38834036 DOI: 10.1088/1361-6528/ad53d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
MXenes have been attracting much attention since their introduction due to their amazing properties such as unique structure, good hydrophilicity, metal-grade electrical conductivity, rich surface chemistry, low ionic diffusion resistance, and excellent mechanical strength. It is noteworthy that different synthesis methods have a great influence on the structure and properties of MXenes. In recent years, some modification strategies of MXenes with unique insights have been developed with the increasing research. In summary, this paper reviews and summarizes the recent research progress of MXenes from the perspective of preparation processes (including hydrofluoric acid direct etching, fluoride/concentrated acid hybrid etching, fluoride melt etching, electrochemical etching, alkali-assisted etching and Lewis acid etching strategies), which can provide valuable guidance for the preparation and application of high-performance MXenes-based materials.
Collapse
Affiliation(s)
- Min Sun
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Siyu Chu
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Zhichao Sun
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Xinyu Jiao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | | | - Zijiong Li
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Liying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
- Henan Key Laboratory of Magnetoelectronic Information Functional Materials, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
2
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
3
|
Rocha JF, Hasimoto LH, Santhiago M. Recent progress and future perspectives of polydopamine nanofilms toward functional electrochemical sensors. Anal Bioanal Chem 2023; 415:3799-3816. [PMID: 36645457 PMCID: PMC9841946 DOI: 10.1007/s00216-023-04522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Jaqueline F Rocha
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Leonardo H Hasimoto
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| |
Collapse
|
6
|
Ferreira LMC, Silva PS, Augusto KKL, Gomes-Júnior PC, Farra SOD, Silva TA, Fatibello-Filho O, Vicentini FC. Using nanostructured carbon black-based electrochemical (bio)sensors for pharmaceutical and biomedical analyses: A comprehensive review. J Pharm Biomed Anal 2022; 221:115032. [PMID: 36152488 DOI: 10.1016/j.jpba.2022.115032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
The outstanding electronic properties of carbon black (CB) and its economic advantages have fueled its application as nanostructured electrode material for the development of new electrochemical sensors and biosensors. CB-based electrochemical sensing devices have been found to exhibit high surface area, fast charge transfer kinetics, and excellent functionalization. In the present work, we set forth a comprehensive review of the recent advances made in the development and application of CB-based electrochemical devices for pharmaceutical and biomedical analyses - from quantitative monitoring of drug formulations to clinical diagnoses - and the underlying challenges and constraints that need to be overcome. We also present a thorough discussion about the strategies and techniques employed in the development of new electrochemical sensing platforms and in the enhancement of their analytical properties and biocompatibility for anchoring active biomolecules, as well as the combination of these sensing devices with other materials aiming at boosting the performance and efficiency of the sensors.
Collapse
Affiliation(s)
- Luís M C Ferreira
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000 Buri, SP, Brazil
| | - Patrícia S Silva
- Department of Chemistry, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Karen K L Augusto
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís km 235, São Carlos, SP, Brazil
| | - Paulo C Gomes-Júnior
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís km 235, São Carlos, SP, Brazil
| | - Sinara O D Farra
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000 Buri, SP, Brazil
| | - Tiago A Silva
- Department of Chemistry, Federal University of Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luís km 235, São Carlos, SP, Brazil
| | - Fernando C Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000 Buri, SP, Brazil.
| |
Collapse
|
7
|
Guler M, Kavak E, Kivrak A. Electrochemical Dopamine Sensor Based on Gold Nanoparticles Electrodeposited on a Polymer/Reduced Graphene Oxide-Modified Glassy Carbon Electrode. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1990310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Muhammet Guler
- Faculty of Science, Department of Chemistry, Van Yüzüncü Yıl University, Van, Turkey
| | - Emrah Kavak
- Faculty of Science, Department of Chemistry, Van Yüzüncü Yıl University, Van, Turkey
| | - Arif Kivrak
- Faculty of Sciences and Arts, Department of Chemistry, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|