1
|
Zhang L, Guo J, Yuan M, Xu Y, Pu Z, Tan C, Wang Q, Xiong X. Microplasma-induced in situ rapid synthesis of CoSe nanosphere@N-doped polymeric carbon dots derived from ZIF-67 for highly sensitive dopamine detection. Anal Chim Acta 2024; 1329:343236. [PMID: 39396300 DOI: 10.1016/j.aca.2024.343236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Designing a fast and sensitive electrochemical sensing platform to achieve selective quantitative detection of dopamine (DA) is a great challenge. Combining transition metal selenides (TMSs) with a variety of conductive carbonaceous materials is one of the effective strategies to improve the electrocatalytic activity of TMSs. However, most of the reported preparation methods of TMSs/carbon-based composite nanomaterials need to be annealed at a high temperature for a long time, which does not meet the requirements of sustainable development. Therefore, it is of great significance to explore an energy-efficient and fast method to prepare these compounds. RESULTS In this work, CoSe nanosphere@nitrogen-doped polymeric carbon dots are rapid prepared using ZIF precursor by simple dielectric barrier discharge (DBD) microplasma-induced on carbon cloth (CoSe NSs@N-PCDs/CC) for the first time. Owing to the fact that CoSe can promote rapid proton transfer, N-CDs has a high specific surface area, rich functional groups and electrical conductivity, this electrode exhibits highly sensitive non-enzymatic electrochemical sensing performance for DA detection. The linear range and detection limit are 0.1 μM-50 μM and 40.2 nM, respectively, and it have been successfully applied to the determination of DA levels in real human serum samples. Theoretical DFT calculations show that the most efficient interaction with DA on the surface of CoSe (101) can promote electrochemical reactions and catalyze DA oxidation. SIGNIFICANCE Using ZIF as precursor, CoSe NSs@N-PCDs/CC electrochemical electrode was synthesized in situ by simple and energy-saving DBD microplasma. CoSe NSs can effectively prevent the aggregation of function-rich N-PCDs and significantly improve the electrocatalytic activity of the composite. The mechanism of high selectivity of CoSe NSs@N-PCDs/CC electrode to DA was studied by DFT calculation. This work provides a new idea for the fast and green synthesis of transition metal and carbon-based nanomaterials by microplasma.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Junchun Guo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ming Yuan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yao Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ziyu Pu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, 644000, China
| | - Qian Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
2
|
Islam F, Ahsan M, Islam N, Hossain MI, Bahadur NM, Aziz A, Al-Humaidi JY, Rahman MM, Maiyalagan T, Hasnat MA. Recent Advancements in Ascribing Several Platinum Free Electrocatalysts Pertinent to Hydrogen Evolution from Water Reduction. Chem Asian J 2024; 19:e202400220. [PMID: 38654594 DOI: 10.1002/asia.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The advancement of a sustainable and scalable catalyst for hydrogen production is crucial for the future of the hydrogen economy. Electrochemical water splitting stands out as a promising pathway for sustainable hydrogen production. However, the development of Pt-free electrocatalysts that match the energy efficiency of Pt while remaining economical poses a significant challenge. This review addresses this challenge by highlighting latest breakthroughs in Pt-free catalysts for the hydrogen evolution reaction (HER). Specifically, we delve into the catalytic performance of various transition metal phosphides, metal carbides, metal sulphides, and metal nitrides toward HER. Our discussion emphasizes strategies for enhancing catalytic performance and explores the relationship between structural composition and the performance of different electrocatalysts. Through this comprehensive review, we aim to provide insights into the ongoing efforts to overcome barriers to scalable hydrogen production and pave the way for a sustainable hydrogen economy.
Collapse
Affiliation(s)
- Fahamidul Islam
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Department of Chemistry, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohebul Ahsan
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- Division of Chemistry, Department of Science and Humanities, Military Institute of Science and Technology, Mirpur Cantonment-, 1216, Dhaka, Bangladesh
| | - Nurnobi Islam
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Imran Hossain
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Chemistry, Faculty of Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry department, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - T Maiyalagan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamilnadu, India
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
3
|
Lv D, Li Q, Wu P, Zhang X, Wang L, Li B, Gao N, Liu Z, Wang L. High-Performance Anode Material Based on Zinc Naphthalocyanine/Graphene Composite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11287-11296. [PMID: 38748978 DOI: 10.1021/acs.langmuir.4c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Transition metal oxides are a potential anode material owing to their high theoretical capacity. Nonetheless, their large volume changes and low electrical conductivities lead to poor cycling performance and rate capabilities. In this article, an effective strategy is proposed and developed for preparing a ZnO/N-doped graphene composite (ZnNc/GO-5). The key point of this strategy is to use zinc tetra tert-butyl-naphthalocyanine (ZnNc) as a codoped source of N atoms and zinc ions, and graphene oxide (GO) which is combined with ZnNc by π-π deposition as a carbon matrix. After calcination, ZnO microcrystals coated with N-doped graphene are obtained. The unique features of the composite and synergistic effect between N-doped reduced graphene oxide and ZnO microcrystals enable good electrochemical performance by the composites when used in lithium-ion batteries. As an anode material, the as-synthesized ZnNc/GO-5 composite delivers a high first capacity of 1942.9 mAh g-1 and excellent cyclic stability of 861.4 mAh g-1 after 150 cycles at 100 mA g-1. This strategy may offer a new method of designing the anode materials of lithium-ion batteries and promote the practical use of organic molecules in next-generation lithium-ion batteries.
Collapse
Affiliation(s)
- Dongjun Lv
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Dezhou, Shandong 253023, China
| | - Qiuya Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300054, China
| | - Ping Wu
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiaolei Zhang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Li Wang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300054, China
| | - Nan Gao
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhisen Liu
- College of Light Industry & Textiles, Inner Mongolia University of Technology, Hohhot 010000, China
| | - Liping Wang
- College of Light Industry & Textiles, Inner Mongolia University of Technology, Hohhot 010000, China
| |
Collapse
|
4
|
You L, Dong S, Fang Y, Guo Y, Zhu K, Gao Y, Bao T, Wu H, Cao D. A graphene-like hollow sphere anode for lithium-ion batteries. Chem Commun (Camb) 2024; 60:5030-5033. [PMID: 38630296 DOI: 10.1039/d4cc00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We report a flash Joule heating method for the rapid preparation of graphene-like materials. The L-GHS exhibited a uniform diameter of 200 nm and an ideal specific surface area of 670 m2 g-1. Meanwhile, the specific capacity of L-GHS remained at 942 mA h g-1 after 600 cycles (1 A g-1), which shows excellent electrochemical performance.
Collapse
Affiliation(s)
- Lili You
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Shu Dong
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Yongzheng Fang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yan Guo
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Yinyi Gao
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Tianzeng Bao
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Hongbin Wu
- Hunan Hongshan New Energy Technology Co., Ltd, Henglongqiao Town, Heshan District, Yiyang City, Hunan Province, China, 413000
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| |
Collapse
|
5
|
Yin H, Zhan G, Yan R, Wu X, Hu Q, Huang X. p-n heterogeneous Sb 2S 3/SnO 2 quantum dot anchored reduced graphene oxide nanosheets for high-performance lithium-ion batteries. Dalton Trans 2024; 53:7142-7151. [PMID: 38572711 DOI: 10.1039/d4dt00153b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Antimony sulfide (Sb2S3) has a high theoretical specific capacity due to its two reaction mechanisms of conversion and alloying during the Li+-(de)intercalation process, thus becoming a promising lithium-ion battery (LIB) anode material. However, its poor inherent conductivity and large volume expansion during repeated Li+-(de)intercalation processes greatly hinder the in-depth development of Sb2S3 based LIB anode materials. Herein, an Sb2S3/SnO2@rGO composite was prepared by using an interface engineering technique involving metal-containing ionic liquid precursors, in which Sb2S3/SnO2 quantum dots (QDs) as p-n heterojunctions are uniformly anchored on the surface of reduced graphene oxide (rGO). The p-n heterogeneous interface between Sb2S3 and SnO2 QDs induces an internal electric field, promoting the electronic/ion transport during electrochemical reactions, and the QD-sized Sb2S3/SnO2 heterostructure with a larger surface area provides more active sites for Li+-(de)intercalation reactions. In addition, the rGO matrix acts as a buffer to prevent the aggregation of active Sb2S3 and SnO2 QDs, alleviate the volume expansion, and enhance the conductivity of the composite during repeated cycles. These advantages endow the designed Sb2S3/SnO2@rGO electrode with excellent reaction kinetics and good long cycling stability. As an anode material of LIBs, it can still provide a reversible specific capacity of 474 mA h g-1 after 2000 cycles at a high current density of 3.0 A g-1, which is superior to those of most of the previously reported Sb2S3-based carbon materials. The p-n heterostructure construction strategy of nano-metal sulfide/metal oxides in this work can provide inspiration for the design and synthesis of other advanced energy storage materials.
Collapse
Affiliation(s)
- Haiyan Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.
- College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Guanghao Zhan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.
- College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Ruibo Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P.R. China
| | - Xiaohui Wu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P.R. China
| | - Qianqian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China.
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| |
Collapse
|
6
|
Grira S, Alkhedher M, Abu Khalifeh H, Ramadan M, Ghazal M. Using algae in Li-ion batteries: A sustainable pathway toward greener energy storage. BIORESOURCE TECHNOLOGY 2024; 394:130225. [PMID: 38122999 DOI: 10.1016/j.biortech.2023.130225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
This paper reviews and analyzes the innovations and advances in using algae and their derivatives in different parts of Li-ion batteries. Applications in Li-ion battery anodes, electrolytes, binders, and separators were discussed. Algae provides a sustainable feedstock for different materials that can be used in Li-ion batteries, such as carbonaceous material, biosilica, biopolymers, and other materials that have unique micro- and nano-structures that act as biotemplates for composites structure design. Natural materials and biotemplates provided by algae have various advantages, such as electrochemical and thermal stability, porosity that allows higher storage capacity, nontoxicity, and other properties discussed in the paper. Results reveal that despite algae and its derivatives being a promising renewable feedstock for different applications in Li-ion batteries, more research is yet to be performed to evaluate its feasibility of being used in the industry.
Collapse
Affiliation(s)
- Soumaya Grira
- Chemical Engineering Department, Abu Dhabi University, 59911 Abu Dhabi, United Arab Emirates
| | - Mohammad Alkhedher
- Mechanical and Industrial Engineering Department, Abu Dhabi University, 59911 Abu Dhabi, United Arab Emirates
| | - Hadil Abu Khalifeh
- Chemical Engineering Department, Abu Dhabi University, 59911 Abu Dhabi, United Arab Emirates
| | - Mohamad Ramadan
- Lebanese International University, PO Box 146404 Beirut, Lebanon; International University of Beirut, PO Box 146404 Beirut, Lebanon; Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, France.
| | - Mohammed Ghazal
- Electrical, Computer and Biomedical Engineering Department, Abu Dhabi University, 59911 Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Qi C, Zhao M, Fang T, Zhu Y, Wang P, Xie A, Shen Y. Multifunctional Hollow Porous Fe 3O 4@N-C Nanocomposites as Anodes of Lithium-Ion Battery, Adsorbents and Surface-Enhanced Raman Scattering Substrates. Molecules 2023; 28:5183. [PMID: 37446845 DOI: 10.3390/molecules28135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
At present, it is still a challenge to prepare multifunctional composite nanomaterials with simple composition and favorable structure. Here, multifunctional Fe3O4@nitrogen-doped carbon (N-C) nanocomposites with hollow porous core-shell structure and significant electrochemical, adsorption and sensing performances were successfully synthesized through the hydrothermal method, polymer coating, then thermal annealing process in nitrogen (N2) and lastly etching in hydrochloric acid (HCl). The morphologies and properties of the as-obtained Fe3O4@N-C nanocomposites were markedly affected by the etching time of HCl. When the Fe3O4@N-C nanocomposites after etching for 30 min (Fe3O4@N-C-3) were applied as the anodes for lithium-ion batteries (LIBs), the invertible capacity could reach 1772 mA h g-1 after 100 cycles at the current density of 0.2 A g-1, which is much better than that of Fe3O4@N-C nanocomposites etched, respectively, for 15 min and 45 min (948 mA h g-1 and 1127 mA h g-1). Additionally, the hollow porous Fe3O4@N-C-3 nanocomposites also exhibited superior rate capacity (950 mA h g-1 at 0.6 A g-1). The excellent electrochemical properties of Fe3O4@N-C nanocomposites are attributed to their distinctive hollow porous core-shell structure and appropriate N-doped carbon coating, which could provide high-efficiency transmission channels for ions/electrons, improve the structural stability and accommodate the volume variation in the repeated Li insertion/extraction procedure. In addition, the Fe3O4@N-C nanocomposites etched by HCl for different lengths of time, especially Fe3O4@N-C-3 nanocomposites, also show good performance as adsorbents for the removal of the organic dye (methyl orange, MO) and surface-enhanced Raman scattering (SERS) substrates for the determination of a pesticide (thiram). This work provides reference for the design and preparation of multifunctional materials with peculiar pore structure and uncomplicated composition.
Collapse
Affiliation(s)
- Chunxia Qi
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
- Department of Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Mengxiao Zhao
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Tian Fang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yaping Zhu
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Peisan Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Anjian Xie
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Yuhua Shen
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Yang XT, Huang TY, Wang YH, Dong JC, Wei QL, Zhang H, Lin XM, Li JF. Understanding the origin of the improved sodium ion storage performance of the transition metal oxide@carbon nanocomposite anodes. J Chem Phys 2023; 158:2888611. [PMID: 37144711 DOI: 10.1063/5.0149871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
Transition metal oxide (TMO) anodes show inferior sodium ion storage performance compared with that of lithium ion storage owing to the larger radium size and heavier elemental mass of Na+ than Li+. Effective strategies are highly desired to improve the Na+ storage performance of TMOs for applications. In this work, using ZnFe2O4@xC nanocomposites as model materials for investigation, we found that by manipulating the particle sizes of the inner TMOs core and the features of outer carbon coating, the Na+ storage performance can be significantly improved. The ZnFe2O4@1C with a diameter of the inner ZnFe2O4 core of around 200 nm coated by a thin carbon layer of around 3 nm shows a specific capacity of only 120 mA h g-1. The ZnFe2O4@6.5C with a diameter of the inner ZnFe2O4 core of around 110 nm embedding in a porous interconnected carbon matrix displays a significantly improved specific capacity of 420 mA h g-1 at the same specific current. Furthermore, the latter shows an excellent cycling stability of 1000 cycles with a capacity retention of 90% of the initial 220 mA h g-1 specific capacity at 1.0 A g-1. TEM, electrochemical impedance spectroscopy, and kinetic analysis show that the inner ZnFe2O4 core with reduced particle size and the outer thicker and interconnected carbon matrix synergistically improve the active reaction sites, integrity, electric conductivity, and pseudocapacitive-controlled contribution of ZnFe2O4@xC nanocomposites, thus leading to an overall enhanced Na+ storage performance. Our findings create a universal, facile, and effective method to enhance the Na+ storage performance of the TMO@C nanomaterials.
Collapse
Affiliation(s)
- Xin-Tao Yang
- College of Materials, College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
| | - Ting-Yi Huang
- College of Materials, College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- College of Materials, College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- College of Materials, College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
| | - Qiu-Long Wei
- College of Materials, College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
| | - Hua Zhang
- College of Materials, College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
| | - Xiu-Mei Lin
- College of Materials, College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
- Department of Chemistry and Environment Science, Fujian Province University Key Laboratory of Analytical Science, Minnan Normal University, Zhangzhou 363000, China
| | - Jian-Feng Li
- College of Materials, College of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
9
|
Dias GDS, Costa JM, Almeida Neto AFD. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review. Adv Colloid Interface Sci 2023; 315:102891. [PMID: 37058836 DOI: 10.1016/j.cis.2023.102891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The rechargeable alkaline aqueous zinc-air batteries (ZABs) are prospective candidates to supply the energy demand for their high theoretical energy density, inherent safety, and environmental friendliness. However, their practical application is mainly restricted by the unsatisfactory efficiency of the air electrode, leading to an intense search for high-efficient oxygen electrocatalysts. In recent years, the composites of carbon materials and transition metal chalcogenides (TMC/C) have emerged as promising alternatives because of the unique properties of these single compounds and the synergistic effect between them. In this sense, this review presented the electrochemical properties of these composites and their effects on the ZAB performance. The operational fundamentals of the ZABs were described. After elucidating the role of the carbon matrix in the hybrid material, the latest developments in the ZAB performance of the monometallic structure and spinel of TMC/C were detailed. In addition, we report topics on doping and heterostructure due to the large number of studies involving these specific defects. Finally, a critical conclusion and a brief overview sought to contribute to the advancement of TMC/C in the ZABs.
Collapse
Affiliation(s)
- Giancarlo de Souza Dias
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato St., 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Liao W, Hu Q, Lin X, Yan R, Zhan G, Wu X, Huang X. A Selective Oxidation Strategy towards the Yolk-Shell Structured ZnS@C Material for Ultra-Stable Li-Ion Storage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2097. [PMID: 36903212 PMCID: PMC10004707 DOI: 10.3390/ma16052097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Metal chalcogenides are attractive anode materials for lithium-ion batteries (LIBs) due to their high theoretical capacities. With the advantages of low cost and abundance reserves, ZnS is regarded as the prime candidate anode material for future generations, but its practical application is hindered by the large volume expansion during repeated cycling processes and inherent poor conductivity. Rational design of the microstructure with large pore volume and high specific surface area is of great significance to solve these problems. Here, a carbon-coated ZnS yolk-shell structure (YS-ZnS@C) has been prepared by selective partial oxidation of a core-shell structured ZnS@C precursor in air and subsequent acid etching. Studies show that the carbon wrapping and proper etching to bring cavities can not only improve the material's electrical conductivity, but can also effectively alleviate the volume expansion problem of ZnS during its cycles. As a LIB anode material, the YS-ZnS@C exhibits an obvious superiority in capacity and cycle life compared to ZnS@C. The YS-ZnS@C composite shows a discharge capacity of 910 mA h g-1 at the current density of 100 mA g-1 after 65 cycles, compared to only 604 mA h g-1 for ZnS@C after 65 cycles. Notably, at a large current density of 3000 mA g-1, a capacity of 206 mA h g-1 can still be maintained after 1000 cycles (over three times of the capacity for ZnS@C). It is expected that the synthetic strategy developed here is applicable to designing various high-performance metal chalcogenide-based anode materials for LIBs.
Collapse
Affiliation(s)
- Wenhua Liao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Qianqian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaoshan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ruibo Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Guanghao Zhan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaohui Wu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
11
|
Facile Synthesis of Nb-Doped CoTiO3 Hexagonal Microprisms as Promising Anode Materials for Lithium-Ion Batteries. INORGANICS 2022. [DOI: 10.3390/inorganics11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bimetallic oxides are demonstrated to show better electrochemical performance than single transition metal oxides. Recently, ilmenite-type transition metal titanate (MTiO3, M = Fe, Co, Ni, etc.) is emerging as a promising anode for lithium-ion batteries (LIBs) due to its comparable theoretical capacity and small volumetric change during cycling. However, the practical electrochemical performance is still harmed by its poor electronic conductivity. Herein, for the first time, a Nb-doping strategy is adopted to modify CoTiO3 hexagonal microprisms by a facile solvothermal method combined with an annealing treatment. Benefiting from the unique 1D morphology and the ameliorated conductivities induced by Nb-doping, the optimized Nb-doped CoTiO3 anode exhibits an improved lithium-storage capacity of 233 mA h g−1 at 100 mA g−1 after 100 cycles and excellent rate capability, which are superior to that of pure CoTiO3. This work sheds light on the potential application of titanium containing bimetallic oxide in the next-generation advanced rechargeable LIBs.
Collapse
|
12
|
Yu L, Yang Q, Zhu G, Che R. Synthesis of Co 3O 4/VG/CNT Composite Microspheres with Excellent Lithium Storage Performance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Linhe Yu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Qihao Yang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Guozhen Zhu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
13
|
Gnanasekaran L, Chen WH, Soto-Moscoso M. Highly operative NiO/ZnO nanocomposites for photocatalytic removal of azo dye. CHEMOSPHERE 2022; 308:136528. [PMID: 36165839 DOI: 10.1016/j.chemosphere.2022.136528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The far-reaching technology of semiconductors in treating water pollutants reduces serious health hazards to humans and other eco-systems. With this interpretation, this work is attempted for the first time to synthesize nanosized pristine NiO and ZnO materials, and NiO/ZnO (70:30, 50:50) composites by co-precipitation method. The synthesized materials were then portrayed for their properties using various instrumental techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectrum (EDXS), Fourier transform Infrared spectrum (FT-IR). The main approach of this work is connected with the ultra violet (UV) photocatalytic degradation of MO (methyl orange) by employing the synthesized nanomaterials as catalysts. In view of results, the photocatalytic degradation of NiO/ZnO (70:30) has reported the greatest efficiency than the other catalysts. This outcome lies with the consideration of higher content of NiO present in the composite than ZnO. Further, there was the existence of higher surface area analysed from the BET result. Also, the NiO/ZnO (50:50) sample showed lower degradation efficiency in terms of formed agglomeration when surveyed through TEM. Besides, the positive mechanism of photocatalysis reaction forms the essential hydroxyl radicals which correspond to MO degradation. Moreover, the highly efficient NiO/ZnO (70:30) sample has been trialled for photocatalytic repetition process to observe the stability of degradation. It has accounted with good efficiency for 5 repeated cycles. Finally for UV degradation, the recognized photocatalytic aspect was due to the surface morphology enhanced surface area, synergistic effects of metal oxides and electron-hole charge separation.
Collapse
Affiliation(s)
- Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | | |
Collapse
|
14
|
Lu X, Liu H, Shi X, Zhang J. A simple synthesis of Li3Fe(MoO4)3@C composite anode materials with high initial Coulombic efficiency and high capacity stability for lithium ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Interaction of Co3O4 Nanocube with Graphene and Reduced Graphene Oxide: Adhesion and Quantum Capacitance. LUBRICANTS 2022. [DOI: 10.3390/lubricants10050079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The composites on the base of Co3O4 and graphene are in demand in the field of portable, flexible energy storage devices due to their small size, lightweight, big specific capacitance, good cycle stability and appropriate capacitance retention. The synthesis of this material always starts from the treatment of graphene oxide, so as a result, experimenters receive Co3O4 nanocubes incorporated into reduced graphene oxide indicates the presence of different oxygen-containing groups in the compound. This fact may limit the advantages of the considered material. Our theoretical quantum chemical calculations show that the process of Co3O4 incorporation between reduced graphene oxide layers is more energetically favorable in comparison to pure graphene. However, the win in the quantum capacitance in the case of pure graphene is in the range of 300–500 F/g in dependence on the applied voltage. The obtained result may indicate the need for modification of the current methods of graphene/Co3O4 synthesis to improve its application in supercapacitors and lithium-ion batteries.
Collapse
|
16
|
Cai K, Luo SH, Cong J, Li K, Ya SX, Hou PQ, Wang Q, Zhang Y, Liu X, Lei X, Mu W, Gao J. Facile microwave-assisted hydrothermal synthesis and improved electrochemical performance of micro rhombus ZnMn2O4 anodes for Li-ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|