1
|
Yang Z, Hu Q, Wang L, Cao J, Song J, Song L, Zhang Y. Recent advances in the synthesis and application of graphene aerogel and silica aerogel for environment and energy storage: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124668. [PMID: 39986145 DOI: 10.1016/j.jenvman.2025.124668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Aerogel materials have gained considerable attention in recent years due to their promising applications in environmental and energy storage fields, owing to their exceptional properties, including high porosity, ultra-low thermal conductivity, low density, and high specific surface area. This review begins by examining novel synthesis techniques, including sol-gel processing, chemical crosslinking, and templating, that enhance both the microstructural and functional properties of aerogels. Next, we explore the applications of graphene and silica aerogels in environmental and energy conservation technologies. Graphene aerogels, in particular, demonstrate significant potential in water purification by effectively removing antibiotics, offering a new approach to water treatment. The combination of silica aerogels with phase change materials, along with their use in supercapacitors, demonstrates their potential for energy conservation. Additionally, we discuss the synergistic effects of silica and graphene aerogels, which further broaden their applications. Finally, the paper concludes by summarizing the potential of graphene and silica aerogels as functional materials for environmental applications and outlining the challenges and future directions for their development and industrial use.
Collapse
Affiliation(s)
- Zhenglong Yang
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830047, PR China
| | - Qi Hu
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830047, PR China.
| | - Lei Wang
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Jirui Song
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830047, PR China
| | - Lijie Song
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830047, PR China
| | - Yujie Zhang
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830047, PR China
| |
Collapse
|
2
|
Ran Y, Cui R, Wang X, Wang H, Zhang L, Xu L, Zhu J, Huang Q, Yuan W. Advancements in iron-based photocatalytic degradation for antibiotics and dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:123991. [PMID: 39813802 DOI: 10.1016/j.jenvman.2024.123991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/18/2025]
Abstract
The accelerated growth of the economy and advancements in medical technology have led to the discharge of a diverse range of organic pollutants into water sources. Recent investigations into water treatment have demonstrated the potential for integrating photocatalysis with techniques such as photocatalytic persulfate activation and the Photo-Fenton process for more efficient wastewater management. Iron-based photocatalysts responsive to visible light offer several advantages, including non-toxicity, safety, affordability, and excellent chemical and optical properties. Currently, there is a notable increase in research activity focused on the iron-based photocatalytic degradation of antibiotics and dyes. Given their abundance, cost-effectiveness, and eco-friendliness, iron-based photocatalysis shows considerable promise for various applications, including water treatment, air purification, and energy conversion. The use of iron-based photocatalysts has been demonstrated to facilitate the production of more reactive oxygen radicals, achievable through the Photo-Fenton process, direct photocatalysis, and the photocatalytic activation of persulfates. This approach has been demonstrated to enhance the degradation efficiency of antibiotics and dyes. Ongoing research encompasses the preparation and refinement of iron-based materials, exploration of photocatalytic mechanisms, and expansion of practical applications. Future directions include material innovation, elucidation of mechanisms, scaling up applications, and multifunctionalization, with the objective of enhancing photocatalytic efficiency, transitioning the technology from laboratory settings to practical scales, and providing effective solutions to environmental challenges and energy constraints.
Collapse
Affiliation(s)
- Yuhui Ran
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China
| | - Renyin Cui
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China
| | - Xiaoyan Wang
- School of Energy and Materials, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China
| | - Haixiang Wang
- Nantong Ruike Environmental Protection Technology Co., Ltd, Nantong, Jiangsu, 226236, PR China
| | - Li Zhang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China
| | - Lijun Xu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China
| | - Jianming Zhu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China.
| | - Qing Huang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China.
| | - Wenyi Yuan
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, No. 2360 Jinhai Road, Shanghai, 201209, PR China
| |
Collapse
|
3
|
Elanthamilan E, Wang SF. Flower-like 3D SnS decorated on nickel metal-organic framework for electrochemical detection of dimetridazole in food samples. Food Chem 2024; 452:139575. [PMID: 38735112 DOI: 10.1016/j.foodchem.2024.139575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Dimetridazole (DMZ) is a broad-spectrum antibiotic effective against bacterial and protozoan infections in humans and poultry farms. However, excessive DMZ intake leads to harmful effects. Thus, minimizing its environmental presence is crucial for sustaining daily life. This study presents an innovative approach to construct flower-like SnS particle decorations on a nickel metal-organic framework (Ni-MOF@SnS) as an electrocatalyst for DMZ detection. The Ni-MOF@SnS/GCE sensor exhibits exceptional electrocatalytic behavior, including a significantly reduced detection limit of 1.6 nM, extensive linear ranges from 0.01 μM to 60 μM and from 60 μM to 231 μM at lower and higher DMZ concentrations, respectively. It also shows enhanced sensitivity (0.139 μA μM-1 cm-2) and remarkable selectivity for DMZ detection using differential-pulse voltammetry (DPV). Furthermore, the proposed sensor demonstrates good recovery results with actual food samples.
Collapse
Affiliation(s)
- Elaiyappillai Elanthamilan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| |
Collapse
|
4
|
Ansari MZ, Hussain I, Mohapatra D, Ansari SA, Rahighi R, Nandi DK, Song W, Kim S. Atomic Layer Deposition-A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303055. [PMID: 37937382 PMCID: PMC10767429 DOI: 10.1002/advs.202303055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/07/2023] [Indexed: 11/09/2023]
Abstract
Atomic layer deposition (ALD) has become the most widely used thin-film deposition technique in various fields due to its unique advantages, such as self-terminating growth, precise thickness control, and excellent deposition quality. In the energy storage domain, ALD has shown great potential for supercapacitors (SCs) by enabling the construction and surface engineering of novel electrode materials. This review aims to present a comprehensive outlook on the development, achievements, and design of advanced electrodes involving the application of ALD for realizing high-performance SCs to date, as organized in several sections of this paper. Specifically, this review focuses on understanding the influence of ALD parameters on the electrochemical performance and discusses the ALD of nanostructured electrochemically active electrode materials on various templates for SCs. It examines the influence of ALD parameters on electrochemical performance and highlights ALD's role in passivating electrodes and creating 3D nanoarchitectures. The relationship between synthesis procedures and SC properties is analyzed to guide future research in preparing materials for various applications. Finally, it is concluded by suggesting the directions and scope of future research and development to further leverage the unique advantages of ALD for fabricating new materials and harness the unexplored opportunities in the fabrication of advanced-generation SCs.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School of Materials Science and EngineeringYeungnam University280 Daehak‐RoGyeongsanGyeongbuk38541Republic of Korea
| | - Iftikhar Hussain
- Department of Mechanical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowoonHong Kong
| | - Debananda Mohapatra
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| | - Sajid Ali Ansari
- Department of PhysicsCollege of ScienceKing Faisal UniversityP.O. Box 400HofufAl‐Ahsa31982Saudi Arabia
| | - Reza Rahighi
- SKKU Advanced Institute of Nano‐Technology (SAINT)Sungkyunkwan University2066 Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Republic of Korea
| | - Dip K Nandi
- Plessey Semiconductors LtdTamerton Road RoboroughPlymouthDevonPL6 7BQUK
| | - Wooseok Song
- Thin Film Materials Research CenterKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Soo‐Hyun Kim
- Graduate School of Semiconductor Materials and Devices EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
- Department of Materials Science and EngineeringUlsan National Institute of Science & Technology (UNIST)50 UNIST‐gilUlju‐gunUlsan44919Republic of Korea
| |
Collapse
|
5
|
Pasha AA, Khan H, Sohail M, Rahman N, Khan R, Ullah A, Khan AA, Khan A, Casini R, Alataway A, Dewidar AZ, Elansary HO. A Computational First Principle Examination of the Elastic, Optical, Structural and Electronic Properties of AlRF 3 (R = N, P) Fluoroperovskites Compounds. Molecules 2023; 28:molecules28093876. [PMID: 37175286 PMCID: PMC10179785 DOI: 10.3390/molecules28093876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
This work describes an ab initio principle computational examination of the optical, structural, elastic, electronic and mechanical characteristics of aluminum-based compounds AlRF3 (R = N, P) halide-perovskites. For optimization purposes, we used the Birch-Murnaghan equation of state and discovered that the compounds AlNF3 and AlPF3 are both structurally stable. The IRelast software was used to compute elastic constants (ECs) of the elastic properties. The aforementioned compounds are stable mechanically. They exhibit strong resistance to plastic strain, possess ductile nature and anisotropic behavior and are scratch-resistant. The modified Becke-Johnson (Tb-mBJ) approximation was adopted to compute various physical properties, revealing that AlNF3 and AlPF3 are both metals in nature. From the density of states, the support of various electronic states in the band structures are explained. Other various optical characteristics have been calculated from the investigations of the band gap energy of the aforementioned compounds. These compounds absorb a significant amount of energy at high levels. At low energy levels, the compound AlNF3 is transparent to incoming photons, whereas the compound AlPF3 is somewhat opaque. The examination of the visual details led us to the deduction that the compounds AlNF3 and AlPF3 may be used in making ultraviolet devices based on high frequency. This computational effort is being made for the first time in order to investigate the aforementioned properties of these chemicals, which have yet to be confirmed experimentally.
Collapse
Affiliation(s)
- Amjad Ali Pasha
- Aerospace Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Hukam Khan
- Department of Physics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Sohail
- Department of Physics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Rahman
- Department of Physics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Rajwali Khan
- Department of Physics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Asad Ullah
- Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Abid Ali Khan
- Department of Chemical Sciences, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Aurangzeb Khan
- Department of Physics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Ryan Casini
- School of Public Health, University of California, 2121 Berkeley Way, Berkeley, CA 94704, USA
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam O Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Nie T, Li Z, Luo X, She Y, Liang L, Xu Q, Guo L. Single bubble dynamics on a TiO2 photoelectrode surface during photoelectrochemical water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Kumari R, Samadder SR. A critical review of the pre-processing and metals recovery methods from e-wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115887. [PMID: 35933880 DOI: 10.1016/j.jenvman.2022.115887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
E-wastes being potential sources of numerous valuable metals are promoted to undergo recycling and recovery under the umbrella of urban mining and circular economy. Thus, the present study provides a critical review of the technological details of different metal recycling processes, pre-treatment methods, and the advancements made in these techniques. Critical evaluation of different metal recovery techniques has also been presented based on the available life cycle assessment (LCA), techno-economic, and industrial-scale studies. The study revealed that the integrated metal recovery techniques serve better in terms of recovery efficiency and environmental performance than any single recovery technique. Also, scaling up of biometallurgical, electrochemical, and super critical fluid extraction methods needs to be promoted due to their better environmental performances.
Collapse
Affiliation(s)
- Rima Kumari
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Sukha Ranjan Samadder
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
8
|
BiBi S, Shah MZU, Sajjad M, Shafi HZ, Amin B, Bajaber MA, Shah A. A new ZnO-ZnS-CdS heterostructure on Ni substrate: A binder-free electrode for advanced asymmetric supercapacitors with improved performance. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Zhang T, Yang Y, Zhou K, Liu B, Tian G, Zuo W, Zhou H, Bian B. Hydrothermal oxidation degradation of dioxins in fly ash with water-washing and added Ce-Mn catalyst. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115430. [PMID: 35649334 DOI: 10.1016/j.jenvman.2022.115430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive analysis of the effects of the temperature, reaction time, liquid-solid ratio (L/S), and initial pH on the hydrothermal degradation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) (which are both PCDD/Fs) in municipal solid waste incineration (MSWI) fly ash is presented. Consequently, the hydrothermal degradation reaction is catalyzed using Ce-Mn catalyst under low-temperature conditions to study the effect of the catalyst on the degradation efficiency of PCDD/Fs. The experimental results show that temperature is the most critical factor for the reaction. When the hydrothermal oxidation temperature reaches 280 °C (reaction time = 120 min, original pH = 8.5, L/S = 4 mL/g), the toxicity equivalent (I-TEQ) of PCDD/Fs is only 5.4 ng TEQ/kg, and the degradation efficiency reaches 99.71%. Under these conditions, 2,3,4,7,8-P5CDF makes the highest contribution to I-TEQ degradation, reaching 37.4%. There are four main pathways for the reaction of 2,3,4,7,8-P5CDF with hydroxyl radicals. A comparison of the PCDD/F concentrations of different products shows that the addition of 0.5%, 1.0%, and 1.5% of the Ce-Mn catalyst reduces the degradation efficiency by 8.79%, 1.40%, and 0.07%, respectively, which indicates that the addition of a small quantity of Ce-Mn catalyst does not facilitate the degradation of PCDD/Fs. The addition of the catalyst significantly decreases the degradation efficiency of low-chlorinated homologs but has a relatively small effect on that of high-chlorinated homologs. Therefore, it is concluded that Ce-Mn catalysts are more likely to promote resynthesis than degradation of PCDD/Fs.
Collapse
Affiliation(s)
- Tong Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Yuchen Yang
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Kai Zhou
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Bo Liu
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Ganpei Tian
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China
| | - Wu Zuo
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd., Nanjing, 210000, China
| | - Haiyun Zhou
- Jiangsu Provincial Environmental Engineering Technology Co., Ltd., Nanjing, 210000, China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing, 210046, PR China.
| |
Collapse
|
10
|
Surface plasma–induced tunable nitrogen doping through precursors provides 1T-2H MoSe2/graphene sheet composites as electrocatalysts for the hydrogen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Khan H, Sohail M, Khan R, Raman N, Ullah A, Khan A, Alataway A, Dewidar AZ, Elansary HO, Yessoufou K. Theoretical Investigations into the Different Properties of Al-Based Fluoroperovskite AlMF 3 (M = Cr, B) Compounds by the TB-MBJ Potential Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175942. [PMID: 36079324 PMCID: PMC9457342 DOI: 10.3390/ma15175942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 05/27/2023]
Abstract
Al-based fluoroperovskites compounds AlMF3 (M = Cr, B) are investigated computationally and calculated their elastic, structural, optical, and electrical properties in this study utilising TB-MBJ potential (also GGA+U for AlCrF3) approximations, according to the Birch Murnaghan Equation curve and tolerance factor, these material are structurally cubic and stable. The IRelast algorithm is used to forecast elastic properties, and the outputs show that these compound are mechanically stable, anisotropic and ductile. AlBF3 has a metallic nature and overlapping states, while AlCrF3 have a narrow indirect band gap at (X-M) points of symmetry, with band gaps of 0.71 eV for AlCrF3 and zero eV for AlBF3. The partial and total density of states are being used to determine the influences of different basic states to the conduction and valence bands (TDOS & PDOS). Investigation of Optical properties shows that these compounds have low refractive index and high absorption coefficient, conductivity, reflective coefficient at high energy ranges. Owing to the indirect band gap, the applications of these compounds are deemed in conducting industries. Here we are using these compounds for first time and are examined using the computational method, which delivers a complete view into the different properties.
Collapse
Affiliation(s)
- Hukam Khan
- Department of Physics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Sohail
- Department of Physics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Rajwali Khan
- Department of Physics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Raman
- Department of Physics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Asad Ullah
- Department of Mathematics, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
| | - Aurangzeb Khan
- Department of Physics, Abdul Wali khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Z. Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hosam O. Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh 11451, Saudi Arabia
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Geography, Environmental Management, and Energy Studies, University of Johannesburg, APK Campus, Johannesburg 2006, South Africa
| | - Kowiyou Yessoufou
- Department of Geography, Environmental Management, and Energy Studies, University of Johannesburg, APK Campus, Johannesburg 2006, South Africa
| |
Collapse
|
12
|
Zhang C, Xu Z, Yu Y, Long A, Ge X, Song Y, An Y, Gu Y. Ternary NiMoCo alloys and fluffy carbon nanotubes grown on ZIF-67-derived polyhedral carbon frameworks as bifunctional electrocatalyst for efficient and stable overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Chimie douce derived Nickelt Cobalt oxynitride as electrode material for high energy density supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Dong X, Wang J, Miao J, Ren B, Wang X, Zhang L, Liu Z, Xu Y. Fe3O4/MnO2 co-doping phenolic resin porous carbon for high performance supercapacitors. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Speed Estimation Method of Linear Motor Extended Kalman Filter Based on Attenuation Memory. ELECTRONICS 2022. [DOI: 10.3390/electronics11101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In allusion to the phenomenon that the extended Kalman filter is easy to diverge in the mover position estimation of permanent magnet synchronous linear motor, a linear motor extended Kalman filter speed estimation method based on attenuation memory is designed. By setting the attenuation factor, α, the extended Kalman filter is introduced to increase the weight of the latest speed data and restrain the divergence of the filter, so as to achieve a better speed tracking effect. In the simulation experiment of the sensorless control of a linear motor, the AMEKF algorithm can significantly improve the speed estimation accuracy of standard EKF, and the speed estimation error is reduced by 0.75%. At the same time, it still maintains a good speed tracking effect and good dynamic performance under variable speed and different load conditions.
Collapse
|
16
|
Naveenkumar P, Maniyazagan M, Yesuraj J, Yang HW, Kang N, Kim K, Kalaignan GP, Kang WS, Kim SJ. Electrodeposited MnS@Ni(OH)2 core-shell hybrids as an efficient electrode materials for symmetric supercapacitor applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|