1
|
Raha S, Fathi AA, Afshar Mogaddam MR, Shahedi-Hodjaghan A, Farajzadeh MA, Hosseini M, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. Heteroatom cobalt-based metal-organic framework and reduced graphene oxide nanocomposite for dispersive solid phase extraction of caffeine from exhaled breath condensate samples of premature infants prior to HPLC-PDA. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124339. [PMID: 39481295 DOI: 10.1016/j.jchromb.2024.124339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024]
Abstract
A cobalt-based metal-organic framework and graphene oxide were combined to prepare a new nanocomposite for extracting of caffeine from exhaled breath condensate (EBC) samples. Dispersive micro solid phase extraction of caffeine was conducted using the nanocomposite as a sorbent by adding 10 mg of it to the sample solution and vortexing for 3 min. After extracting of the analyte, it was eluted using the mobile phase. The analyte was then analyzed using high performance liquid chromatography-photodiode array detector. Under optimal conditions, the limit of detection, limit of quantification, and linear range of the calibration curve were found to be 1.7, 5.9, and 10-500 µg/L, respectively. To assess the precision of the method, five replicates of standard solutions containing caffeine at two different concentration levels (50 and 100 µg/L) were tested. The relative standard deviations for intra- and inter-day precisions ranged from 4.3 to 6.8 %. The applicability of the method was demonstrated by analyzing the samples obtained from premature infants undergoing caffeine treatment and caffeine concentrations were 4.9 ± 0.6, 2.7 ± 0.2 µg/L in the EBC samples of who were under treatment by a 5-mg dose. Also, caffeine concentrations were 5.9 ± 0.3 and 18 ± 0.6 µg/L in the the infants who obtained the 10-mg and 25-mg doses, respectively. The results indicated a satisfactory, extraction recovery of 86 % showcasing the method's reliability and effectiveness in analyzing real samples.
Collapse
Affiliation(s)
- Samineh Raha
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Fathi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Chemistry and Chemical Engineering Department, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan.
| | - Ali Shahedi-Hodjaghan
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | | | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Domínguez-Rodríguez G, Montero L, Herrero M, Cifuentes A, Castro-Puyana M. Capillary electromigration methods for food analysis and Foodomics: Advances and applications in the period March 2021 to March 2023. Electrophoresis 2024; 45:8-34. [PMID: 37603373 DOI: 10.1002/elps.202300126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
This work presents a revision of the main applications of capillary electromigration (CE) methods in food analysis and Foodomics. Papers that were published during the period March 2021 to March 2023 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods and beverages. Namely, CE methods have been applied to analyze amino acids, biogenic amines, heterocyclic amines, peptides, proteins, phenols, polyphenols, pigments, lipids, carbohydrates, vitamins, DNAs, contaminants, toxins, pesticides, additives, residues, small organic and inorganic compounds, and other minor compounds. In addition, new CE procedures to perform chiral separation and for evaluating the effects of food processing as well as the last developments of microchip CE and new applications in Foodomics will be also discussed. The new procedures of CE to investigate food quality and safety, nutritional value, storage, and bioactivity are also included in the present review work.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, CIAL, CSIC, Madrid, Spain
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Madrid, Spain
| | | | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Madrid, Spain
| |
Collapse
|
3
|
Wong A, Santos AM, Feitosa MHA, Fatibello-Filho O, Moraes FC, Sotomayor MDPT. Simultaneous Determination of Uric Acid and Caffeine by Flow Injection Using Multiple-Pulse Amperometry. BIOSENSORS 2023; 13:690. [PMID: 37504089 PMCID: PMC10377323 DOI: 10.3390/bios13070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
The present study reports the development and application of a flow injection analysis (FIA) system for the simultaneous determination of uric acid (UA) and caffeine (CAF) using cathodically pretreated boron-doped diamond electrode (CPT-BDD) and multiple-pulse amperometry (MPA). The electrochemical profiles of UA and CAF were analyzed via cyclic voltammetry in the potential range of 0.20-1.7 V using 0.10 mol L-1 H2SO4 solution as supporting electrolyte. Under optimized conditions, two oxidation peaks at potentials of 0.80 V (UA) and 1.4 V (CAF) were observed; the application of these potentials using multiple-pulse amperometry yielded concentration linear ranges of 5.0 × 10-8-2.2 × 10-5 mol L-1 (UA) and 5.0 × 10-8-1.9 × 10-5 mol L-1 (CAF) and limits of detection of 1.1 × 10-8 and 1.3 × 10-8 mol L-1 for UA and CAF, respectively. The proposed method exhibited good repeatability and stability, and no interference was detected in the electrochemical signals of UA and CAF in the presence of glucose, NaCl, KH2PO4, CaCl2, urea, Pb, Ni, and Cd. The application of the FIA-MPA method for the analysis of environmental samples resulted in recovery rates ranging between 98 and 104%. The results obtained showed that the BDD sensor exhibited a good analytical performance when applied for CAF and UA determination, especially when compared to other sensors reported in the literature.
Collapse
Affiliation(s)
- Ademar Wong
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14801-970, SP, Brazil
| | - Anderson M Santos
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, SP, Brazil
| | - Maria H A Feitosa
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, SP, Brazil
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, SP, Brazil
| | - Fernando C Moraes
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, SP, Brazil
| | - Maria D P T Sotomayor
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14801-970, SP, Brazil
| |
Collapse
|
4
|
Silva MNT, Alves DAC, Richter EM, Munoz RAA, Nossol E. A simple, fast, portable and selective system using carbon nanotubes films and a 3D-printed device for monitoring hydroxychloroquine in environmental samples. Talanta 2023; 265:124810. [PMID: 37364384 DOI: 10.1016/j.talanta.2023.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
In this work, an electrochemical method was developed for rapid and sensitive detection of hydroxychloroquine (HCQ), an ineffective candidate drug for COVID-19 treatment however widely consumed during the pandemic, in aqueous samples using a multi-walled carbon nanotubes (MWCNT) film produced through the interfacial method on the indium tin oxide electrode (ITO). According to Raman spectroscopy, X-ray diffraction, UV-vis spectroscopy, Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and atomic force microscopy, the interfacial method produces homogeneous thin films of carbon nanotubes on the substrate surface, which keep connected to the surface forming a three-dimensional microporous structure. The electrochemical behavior and oxidation kinetics of HCQ were also investigated in the MWCNT film. The sensor showed a 7 times higher oxidation current for (69.88 μA) for HCQ than the ITO electrode (9.33 μA) due to the electrocatalytic properties MWCNTs. The ITO-modified electrode was assembled on a portable 3D-printed batch-injection cell for the amperometric detection of HCQ. The oxidation peak current of HCQ is linearly proportional to the concentrations of HCQ ranging from 1.0 to 100.0 μmol L-1, with a limit of detection of 0.27 μmol L-1. Water samples (river and tap water) were spiked with HCQ, without the need for dispendious pretreatment (except filtration), and analyzed by the portable system, revealing the detection of HCQ with the recovery of 92.0%-99.8%, which suggested the great potential for real environmental monitoring application.
Collapse
Affiliation(s)
- Murillo N T Silva
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil
| | - Diego A C Alves
- Faculty of Mechanical Engineering, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil
| | - Eduardo M Richter
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil
| | - Rodrigo A A Munoz
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil
| | - Edson Nossol
- Federal University of Uberlândia, Institute of Chemistry, 38400-902, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Saraiva DPM, Braga DV, Bossard B, Bertotti M. Multiple Pulse Amperometry-An Antifouling Approach for Nitrite Determination Using Carbon Fiber Microelectrodes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010387. [PMID: 36615580 PMCID: PMC9824076 DOI: 10.3390/molecules28010387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Nitrite is a ubiquitous pollutant in modern society. Developing new strategies for its determination is very important, and electroanalytical methods present outstanding performance on this task. However, the use of bare electrodes is not recommended because of their predisposition to poisoning and passivation. We herein report a procedure to overcome these limitations on carbon fiber microelectrodes through pulsed amperometry. A three-pulse amperometry approach was used to reduce the current decay from 47% (after 20 min under constant potential) to virtually 0%. Repeatability and reproducibility were found to have an RSD lower than 0.5% and 7%, respectively. Tap water and synthetic inorganic saliva samples were fortified with nitrite, and the results obtained with the proposed sensor were in good agreement with the amount added.
Collapse
|
6
|
Easy, rapid and high-throughput analytical sensing platform for theobromine quantification in chocolate and cocoa products based on batch injection analysis with amperometric detection. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
3D-printed carbon black/polylactic acid electrochemical sensor combined with batch injection analysis: A cost-effective and portable tool for naproxen sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Oliveira ACM, Araújo DAG, Pradela-Filho LA, Takeuchi RM, Trindade MAG, Dos Santos AL. Threads in tubing: an innovative approach towards improved electrochemical thread-based microfluidic devices. LAB ON A CHIP 2022; 22:3045-3054. [PMID: 35833547 DOI: 10.1039/d2lc00387b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thread-based microfluidic analytical devices have received growing attention since threads have some advantages over other materials. Compared to paper, threads are also capable of spontaneously transporting fluid due to capillary action, but they have superior mechanical strength and do not require hydrophobic barriers. Therefore, thread-based microfluidic devices can be inexpensively fabricated with no need for external pumps or sophisticated microfabrication apparatus. Despite these outstanding features, achieving a controlled and continuous flow rate is still a challenging task, mainly due to fluid evaporation. Here, we overcome this challenge by inserting a cotton thread into a polyethylene tube aiming to minimize fluid evaporation. Also, a cotton piece was inserted into the outlet reservoir to improve the wicking ability of the device. This strategy enabled the fabrication of an innovative electrochemical thread in a tubing microfluidic device that was capable to hold a consistent flow rate (0.38 μL s-1) for prolonged periods, allowing up to 100 injections in a single device by simply replacing the cotton piece in the outlet reservoir. The proposed device displayed satisfactory analytical performance for selected model analytes (dopamine, hydrogen peroxide, and tert-butylhydroquinone), in addition to being successfully used for quantification of nitrite in spiked artificial saliva samples. Beyond the flow rate improvement, this "thread-in-tube" strategy ensured the protection of the fluid from external contamination while making it easier to connect the electrode array to the microchannels. Thus, we envision that the thread in a tube strategy could bring interesting improvements to thread-based microfluidic analytical devices.
Collapse
Affiliation(s)
- Ana Clara Maia Oliveira
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Diele Aparecida Gouveia Araújo
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Lauro Antonio Pradela-Filho
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Regina Massako Takeuchi
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| | - Magno Aparecido Gonçalves Trindade
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rodovia Dourados-Itahum, km 12, 79804-970 Dourados, Mato Grosso do Sul, Brazil
| | - André Luiz Dos Santos
- Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, 38304-402, Ituiutaba, Brazil.
- Instituto de Química, Universidade Federal de Uberlândia, 38400-902, Uberlândia, Brazil
| |
Collapse
|