1
|
Gândara MIF, Efimov IR, Aras KK. Effect of Spatial Resolution on Accurate Detection and Localization of Arrhythmia Rotors in Human Right Ventricular Tachycardia. J Cardiovasc Dev Dis 2024; 11:322. [PMID: 39452292 PMCID: PMC11508746 DOI: 10.3390/jcdd11100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The goal of this study was to identify the spatial resolution requirements for accurate rotor detection and localization in human right ventricular tachyarrhythmias. Poor spatial resolution is often cited as a reason for the inaccuracy of cardiac mapping catheters in detecting and localizing arrhythmia rotors. High-resolution (0.7 mm) arrhythmia data from optical recordings obtained from human donor hearts (n = 12) were uniformly downsampled to lower resolutions (1.4-7 mm) to approximate the spatial resolution (4 mm) of clinical mapping catheters. Rotors were tracked at various subresolutions and compared to the rotors in the original data by computing F1-scores to create accuracy profiles for both rotor detection and localization. Further comparisons were made according to arrhythmia type, donor sex, anatomical region, and mapped surface: endocardium or epicardium. For a spatial resolution of 4.2 mm, the accuracies of rotor detection and localization were 57% ± 4% and 61% ± 7%, respectively. Arrhythmia type affected the accuracy of rotor detection (monomorphic ventricular tachycardia, 58% ± 4%; ventricular fibrillation, 56% ± 8%) and localization (monomorphic ventricular tachycardia, 70% ± 4%; ventricular fibrillation, 54% ± 13%). However, donor sex, anatomical region (right ventricular outflow tract, mid, and apical), and mapped surface (epicardium and endocardium) did not significantly affect rotor detection or localization accuracy. To achieve rotor detection accuracy of 80%, a spatial resolution of 1.4 mm or better is needed. The accuracy profiles provided here serve as a guideline for future mapping device development.
Collapse
Affiliation(s)
| | - Igor R. Efimov
- Department of Biomedical Engineering, Northwestern University, Chicago, IL 60208, USA;
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kedar K. Aras
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228, USA
| |
Collapse
|
2
|
Roney CH, Wit AL, Peters NS. Challenges Associated with Interpreting Mechanisms of AF. Arrhythm Electrophysiol Rev 2020; 8:273-284. [PMID: 32685158 PMCID: PMC7358959 DOI: 10.15420/aer.2019.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023] Open
Abstract
Determining optimal treatment strategies for complex arrhythmogenesis in AF is confounded by the lack of consensus regarding the mechanisms causing AF. Studies report different mechanisms for AF, ranging from hierarchical drivers to anarchical multiple activation wavelets. Differences in the assessment of AF mechanisms are likely due to AF being recorded across diverse models using different investigational tools, spatial scales and clinical populations. The authors review different AF mechanisms, including anatomical and functional re-entry, hierarchical drivers and anarchical multiple wavelets. They then describe different cardiac mapping techniques and analysis tools, including activation mapping, phase mapping and fibrosis identification. They explain and review different data challenges, including differences between recording devices in spatial and temporal resolutions, spatial coverage and recording surface, and report clinical outcomes using different data modalities. They suggest future research directions for investigating the mechanisms underlying human AF.
Collapse
Affiliation(s)
- Caroline H Roney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Andrew L Wit
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, US
| | - Nicholas S Peters
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
Filos D, Tachmatzidis D, Maglaveras N, Vassilikos V, Chouvarda I. Understanding the Beat-to-Beat Variations of P-Waves Morphologies in AF Patients During Sinus Rhythm: A Scoping Review of the Atrial Simulation Studies. Front Physiol 2019; 10:742. [PMID: 31275161 PMCID: PMC6591370 DOI: 10.3389/fphys.2019.00742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
The remarkable advances in high-performance computing and the resulting increase of the computational power have the potential to leverage computational cardiology toward improving our understanding of the pathophysiological mechanisms of arrhythmias, such as Atrial Fibrillation (AF). In AF, a complex interaction between various triggers and the atrial substrate is considered to be the leading cause of AF initiation and perpetuation. In electrocardiography (ECG), P-wave is supposed to reflect atrial depolarization. It has been found that even during sinus rhythm (SR), multiple P-wave morphologies are present in AF patients with a history of AF, suggesting a higher dispersion of the conduction route in this population. In this scoping review, we focused on the mechanisms which modify the electrical substrate of the atria in AF patients, while investigating the existence of computational models that simulate the propagation of the electrical signal through different routes. The adopted review methodology is based on a structured analytical framework which includes the extraction of the keywords based on an initial limited bibliographic search, the extensive literature search and finally the identification of relevant articles based on the reference list of the studies. The leading mechanisms identified were classified according to their scale, spanning from mechanisms in the cell, tissue or organ level, and the produced outputs. The computational modeling approaches for each of the factors that influence the initiation and the perpetuation of AF are presented here to provide a clear overview of the existing literature. Several levels of categorization were adopted while the studies which aim to translate their findings to ECG phenotyping are highlighted. The results denote the availability of multiple models, which are appropriate under specific conditions. However, the consideration of complex scenarios taking into account multiple spatiotemporal scales, personalization of electrophysiological and anatomical models and the reproducibility in terms of ECG phenotyping has only partially been tackled so far.
Collapse
Affiliation(s)
- Dimitrios Filos
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Nicos Maglaveras
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, United States
| | - Vassilios Vassilikos
- 3rd Cardiology Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chouvarda
- Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Entropy Mapping Approach for Functional Reentry Detection in Atrial Fibrillation: An In-Silico Study. ENTROPY 2019; 21:e21020194. [PMID: 33266909 PMCID: PMC7514676 DOI: 10.3390/e21020194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/06/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
Catheter ablation of critical electrical propagation sites is a promising tool for reducing the recurrence of atrial fibrillation (AF). The spatial identification of the arrhythmogenic mechanisms sustaining AF requires the evaluation of electrograms (EGMs) recorded over the atrial surface. This work aims to characterize functional reentries using measures of entropy to track and detect a reentry core. To this end, different AF episodes are simulated using a 2D model of atrial tissue. Modified Courtemanche human action potential and Fenton–Karma models are implemented. Action potential propagation is modeled by a fractional diffusion equation, and virtual unipolar EGM are calculated. Episodes with stable and meandering rotors, figure-of-eight reentry, and disorganized propagation with multiple reentries are generated. Shannon entropy (ShEn), approximate entropy (ApEn), and sample entropy (SampEn) are computed from the virtual EGM, and entropy maps are built. Phase singularity maps are implemented as references. The results show that ApEn and SampEn maps are able to detect and track the reentry core of rotors and figure-of-eight reentry, while the ShEn results are not satisfactory. Moreover, ApEn and SampEn consistently highlight a reentry core by high entropy values for all of the studied cases, while the ability of ShEn to characterize the reentry core depends on the propagation dynamics. Such features make the ApEn and SampEn maps attractive tools for the study of AF reentries that persist for a period of time that is similar to the length of the observation window, and reentries could be interpreted as AF-sustaining mechanisms. Further research is needed to determine and fully understand the relation of these entropy measures with fibrillation mechanisms other than reentries.
Collapse
|
5
|
Sohn D, Aronis K, Ashikaga H. Scale-invariant structures of spiral waves. Comput Biol Med 2018; 104:291-298. [PMID: 30458961 DOI: 10.1016/j.compbiomed.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Spiral waves are considered to be one of the potential mechanisms that maintain complex arrhythmias such as atrial and ventricular fibrillation. The aim of the present study was to quantify the complex dynamics of spiral waves as the organizing manifolds of information flow at multiple scales. METHOD We simulated spiral waves using a numerical model of cardiac excitation in a two-dimensional (2-D) lattice. We created a renormalization group by coarse graining and re-scaling the original time series in multiple spatiotemporal scales, and quantified the Lagrangian coherent structures (LCS) of the information flow underlying the spiral waves. To quantify the scale-invariant structures, we compared the value of the finite-time Lyapunov exponent between the corresponding components of the 2-D lattice in each spatiotemporal scale of the renormalization group with that of the original scale. RESULTS Both the repelling and the attracting LCS changed across the different spatial and temporal scales of the renormalization group. However, despite the change across the scales, some LCS were scale-invariant. The patterns of those scale-invariant structures were not obvious from the trajectory of the spiral waves based on voltage mapping of the lattice. CONCLUSIONS Some Lagrangian coherent structures of information flow underlying spiral waves are preserved across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Daniel Sohn
- Cardiac Arrhythmia Service, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Carnegie 568, Baltimore, MD, USA
| | - Konstantinos Aronis
- Cardiac Arrhythmia Service, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Carnegie 568, Baltimore, MD, USA
| | - Hiroshi Ashikaga
- Cardiac Arrhythmia Service, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Carnegie 568, Baltimore, MD, USA; IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600, Pessac-Bordeaux, France.
| |
Collapse
|
6
|
Dharmaprani D, McGavigan AD, Chapman D, Kutlieh R, Thanigaimani S, Dykes L, Kalman J, Sanders P, Pope K, Kuklik P, Ganesan AN. Temporal stability and specificity of high bipolar electrogram entropy regions in sustained atrial fibrillation: Implications for mapping. J Electrocardiol 2018; 53:18-27. [PMID: 30580097 DOI: 10.1016/j.jelectrocard.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/02/2018] [Accepted: 11/17/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND The potential utility of entropy (En) for atrial fibrillation (AF) mapping has been demonstrated in previous studies by multiple groups, where an association between high bipolar electrogram (EGM) entropy and the pivot of rotors has been shown. Though En is potentially attractive new approach to ablation, no studies have examined its temporal stability and specificity, which are critical to the application of entropy to clinical ablation. In the current study, we sought to objectively measure the temporal stability and specificity of bipolar EGM entropy in medium to long term recordings using three studies: i) a human basket catheter AF study, ii) a tachypaced sheep AF study and iii) a computer simulation study. OBJECTIVE To characterize the temporal dynamics and specificity of Approximate, Sample and Shannon entropy (ApEn/SampEn/ShEn) in human (H), sheep (S), and computer simulated AF. METHODS 64-electrode basket bi-atria sustained AF recordings (H:15 min; S:40 min) were separated into 5 s segments. ShEn/ApEn/SampEn were computed, and co-registered with NavX 3D maps. Temporal stability was determined in terms of: (i) global pattern stability of En and (ii) the relative stability the top 10% of En regions. To provide mechanistic insights into underlying mechanisms, stability characteristics were compared to models depicting various propagation patterns. To verify these results, cross-validation was performed across multiple En algorithms, across species, and compared with dominant frequency (DF) temporal characteristics. The specificity of En was also determined by looking at the association of En to rotors and areas of wave cross propagation. RESULTS Episodes of AF were analysed (H:26 epochs, 6040 s; S:15 epochs, 14,160 s). The global pattern of En was temporally unstable (CV- H:13.42% ± 4.58%; S:14.13% ± 8.13%; Friedman- H: p > 0.001; S: p > 0.001). However, within this dynamic flux, the top 10% of ApEn/SampEn/ShEn regions were relatively temporally stable (Kappa >0.6) whilst the top 10% of DF regions were unstable (Kappa <0.06). In simulated AF scenarios, the experimental data were optimally reproduced in the context of an AF pattern with stable rotating waves surrounded by wavelet breakup (Kappa: 0.610; p < 0.0001). CONCLUSION En shows global temporal instability, however within this dynamic flux, the top 10% regions exhibited relative temporal stability. This suggests that high En regions may be an appealing ablation target. Despite this, high En was associated with not just the pivot of rotors but also with areas of cross propagation, which suggests the need for future work before clinical application is possible.
Collapse
Affiliation(s)
- Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia
| | - Andrew D McGavigan
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia; Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | | | | | - Shivshankar Thanigaimani
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia
| | - Lukah Dykes
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia
| | | | - Prashanthan Sanders
- University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kenneth Pope
- College of Science and Engineering, Flinders University of South Australia, Adelaide, SA, Australia
| | - Pawel Kuklik
- Department of Cardiology, University Medical Centre, Hamburg, Germany
| | - Anand N Ganesan
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia; Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia.
| |
Collapse
|
7
|
Handa BS, Roney CH, Houston C, Qureshi NA, Li X, Pitcher DS, Chowdhury RA, Lim PB, Dupont E, Niederer SA, Cantwell CD, Peters NS, Ng FS. Analytical approaches for myocardial fibrillation signals. Comput Biol Med 2018; 102:315-326. [PMID: 30025847 PMCID: PMC6215772 DOI: 10.1016/j.compbiomed.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022]
Abstract
Atrial and ventricular fibrillation are complex arrhythmias, and their underlying mechanisms remain widely debated and incompletely understood. This is partly because the electrical signals recorded during myocardial fibrillation are themselves complex and difficult to interpret with simple analytical tools. There are currently a number of analytical approaches to handle fibrillation data. Some of these techniques focus on mapping putative drivers of myocardial fibrillation, such as dominant frequency, organizational index, Shannon entropy and phase mapping. Other techniques focus on mapping the underlying myocardial substrate sustaining fibrillation, such as voltage mapping and complex fractionated electrogram mapping. In this review, we discuss these techniques, their application and their limitations, with reference to our experimental and clinical data. We also describe novel tools including a new algorithm to map microreentrant circuits sustaining fibrillation.
Collapse
Affiliation(s)
- Balvinder S Handa
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Caroline H Roney
- Division of Imaging Sciences and Bioengineering, King's College London, United Kingdom
| | - Charles Houston
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Norman A Qureshi
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Xinyang Li
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - David S Pitcher
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Rasheda A Chowdhury
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Phang Boon Lim
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Emmanuel Dupont
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Steven A Niederer
- Division of Imaging Sciences and Bioengineering, King's College London, United Kingdom
| | - Chris D Cantwell
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom; Department of Aeronautics, Imperial College London, United Kingdom
| | - Nicholas S Peters
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Fu Siong Ng
- ElectroCardioMaths, Imperial Centre for Cardiac Engineering, National Heart & Lung Institute, Imperial College London, United Kingdom.
| |
Collapse
|
8
|
Ashikaga H, James RG. Inter-scale information flow as a surrogate for downward causation that maintains spiral waves. CHAOS (WOODBURY, N.Y.) 2018; 28:075306. [PMID: 30070515 DOI: 10.1063/1.5017534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A rotor, the rotation center of spiral waves, has been proposed as a causal mechanism to maintain atrial fibrillation (AF) in human. However, our current understanding of the causality between rotors and spiral waves remains incomplete. One approach to improving our understanding is to determine the relationship between rotors and downward causation from the macro-scale collective behavior of spiral waves to the micro-scale behavior of individual components in a cardiac system. This downward causation is quantifiable as inter-scale information flow that can be used as a surrogate for the mechanism that maintains spiral waves. We used a numerical model of a cardiac system and generated a renormalization group with system descriptions at multiple scales. We found that transfer entropy quantified the upward and downward inter-scale information flow between micro- and macro-scale descriptions of the cardiac system with spiral waves. In addition, because the spatial profile of transfer entropy and intrinsic transfer entropy was identical, there were no synergistic effects in the system. Furthermore, inter-scale information flow significantly decreased as the description of the system became more macro-scale. Finally, downward information flow was significantly correlated with the number of rotors, but the higher numbers of rotors were not necessarily associated with higher downward information flow. This finding contradicts the concept that the rotors are the causal mechanism that maintains spiral waves, and may account for the conflicting evidence from clinical studies targeting rotors to eliminate AF.
Collapse
Affiliation(s)
- Hiroshi Ashikaga
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France
| | - Ryan G James
- Department of Physics, Complexity Sciences Center, University of California, Davis, One Shields Avenue, Davis, California 95616-8572, USA
| |
Collapse
|
9
|
Vaidya VR, Sugure A, Asirvatham SJ. Innovations in Clinical Cardiac Electrophysiology: Challenges and Upcoming Solutions in 2018 and Beyond. J Innov Card Rhythm Manag 2017; 8:2943-2955. [PMID: 32477763 PMCID: PMC7252723 DOI: 10.19102/icrm.2017.081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Vaibhav R. Vaidya
- Division of Cardiac Electrophysiology, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Alan Sugure
- Division of Cardiac Electrophysiology, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Samuel J. Asirvatham
- Division of Cardiac Electrophysiology, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|