1
|
Casso-Chapa B, González NAV, Le NT, Palaskas NL, Nead KT, Eutsey LP, Samanthapudi VSK, Osborn AM, Lee J, Mejia G, Hoang O, Lin SH, Deswal A, Herrmann J, Wang G, Kirkland JL, Krishnan S, Wehrens XH, Chini EN, Yusuf SW, Iliescu CA, Jain A, Burks JK, Seeley E, Lorenzi PL, Chau KM, Mendoza KCO, Grumbach IM, Brookes PS, Hanssen NM, de Winther MP, Yvan-Charvet L, Kotla S, Schadler K, Abe JI. Reevaluating Anti-Inflammatory Therapy: Targeting Senescence to Balance Anti-Cancer Efficacy and Vascular Disease. Arterioscler Thromb Vasc Biol 2025; 45:372-385. [PMID: 39817327 PMCID: PMC11864897 DOI: 10.1161/atvbaha.124.319870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Modulating immune function is a critical strategy in cancer and atherosclerosis treatments. For cancer, boosting or maintaining the immune system is crucial to prevent tumor growth. However, in vascular disease, mitigating immune responses can decrease inflammation and slow atherosclerosis progression. Anti-inflammatory therapy, therefore, presents a unique dilemma for cancer survivors: while it may decrease cardiovascular risk, it might also promote cancer growth and metastasis by suppressing the immune response. Senescence presents a potentially targetable solution to this challenge; senescence increases the risk of both cancer therapy resistance and vascular disease. Exercise, notably, shows promise in delaying this premature senescence, potentially improving cancer outcomes and lowering vascular disease risk post-treatment. This review focuses on the long-term impact of cancer therapies on vascular health. We underscore the importance of modulating senescence to balance cancer treatment's effectiveness and its vascular impact, and we emphasize investigating the role of exercise-mediated suppression of senescence in improving cancer survivorship.
Collapse
Affiliation(s)
- Bernardo Casso-Chapa
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Norma Alicia Vazquez González
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kevin T. Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lydia P. Eutsey
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Cancer Center Support Grant & Extramural Research Development, UT MD Anderson Cancer Center, Houston, TX
| | | | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonghae Lee
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gilbert Mejia
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Oanh Hoang
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - James L. Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xander H.T. Wehrens
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cezar A. Iliescu
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jared K. Burks
- Department of Leukemia, Division of Center Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Erin Seeley
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh M. Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Keila Carolina Ostos Mendoza
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | | | - Paul S. Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Nordin M.J. Hanssen
- Department of (Experimental) Vascular and Internal Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, the Netherlands
| | - Menno P.J. de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam Institute for Immunology and Infectious Diseases (AII), Inflammatory Diseases Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d’Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), 06204 Nice, France
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keri Schadler
- Department of Pediatric Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Dozic S, Howden EJ, Bell JR, Mellor KM, Delbridge LMD, Weeks KL. Cellular Mechanisms Mediating Exercise-Induced Protection against Cardiotoxic Anthracycline Cancer Therapy. Cells 2023; 12:cells12091312. [PMID: 37174712 PMCID: PMC10177216 DOI: 10.3390/cells12091312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anthracyclines such as doxorubicin are widely used chemotherapy drugs. A common side effect of anthracycline therapy is cardiotoxicity, which can compromise heart function and lead to dilated cardiomyopathy and heart failure. Dexrazoxane and heart failure medications (i.e., beta blockers and drugs targeting the renin-angiotensin system) are prescribed for the primary prevention of cancer therapy-related cardiotoxicity and for the management of cardiac dysfunction and symptoms if they arise during chemotherapy. However, there is a clear need for new therapies to combat the cardiotoxic effects of cancer drugs. Exercise is a cardioprotective stimulus that has recently been shown to improve heart function and prevent functional disability in breast cancer patients undergoing anthracycline chemotherapy. Evidence from preclinical studies supports the use of exercise training to prevent or attenuate the damaging effects of anthracyclines on the cardiovascular system. In this review, we summarise findings from experimental models which provide insight into cellular mechanisms by which exercise may protect the heart from anthracycline-mediated damage, and identify knowledge gaps that require further investigation. Improved understanding of the mechanisms by which exercise protects the heart from anthracyclines may lead to the development of novel therapies to treat cancer therapy-related cardiotoxicity.
Collapse
Affiliation(s)
- Sanela Dozic
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erin J Howden
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James R Bell
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand
| | - Lea M D Delbridge
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate L Weeks
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Gaytan SL, Lawan A, Chang J, Nurunnabi M, Bajpeyi S, Boyle JB, Han SM, Min K. The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity. Front Physiol 2023; 14:1133423. [PMID: 36969584 PMCID: PMC10033603 DOI: 10.3389/fphys.2023.1133423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ahmed Lawan
- Department of Biological Sciences, College of Science, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Jason B. Boyle
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| | - Kisuk Min
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| |
Collapse
|
4
|
MicroRNA-26a confers a potential biomarker for screening of deep vein thrombosis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Endogenous Hydrogen Sulfide Persulfidates Caspase-3 at Cysteine 163 to Inhibit Doxorubicin-Induced Cardiomyocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6153772. [PMID: 35571249 PMCID: PMC9095366 DOI: 10.1155/2022/6153772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) is an efficient antitumor anthracycline drug, but its cardiotoxicity adversely affects the prognosis of the patients. In this study, we explored whether endogenous gasotransmitter hydrogen sulfide (H2S) could protect against DOX-induced cardiomyocyte apoptosis and its mechanisms. The results indicated that DOX significantly downregulated endogenous H2S production and endogenous synthetase cystathionine γ-lyase (CSE) expression and obviously stimulated the apoptosis in H9C2 cells. The supplement of H2S donor sodium hydrosulfide (NaHS) or overexpression of CSE inhibited DOX-induced H9C2 cell apoptosis. DOX enhanced the activities of caspase family members in cardiomyocytes, while NaHS attenuated DOX-enhanced caspase-3, caspase-2, and caspase-9 activities by 223.1%, 73.94%, and 52.29%, respectively. Therefore, taking caspase-3 as a main target, we demonstrated that NaHS or CSE overexpression alleviated the cleavage of caspase-3, suppressed caspase-3 activity, and inhibited the cleavage of poly ADP-ribose polymerase (PARP). Mechanistically, we found that H2S persulfidated caspase-3 in H9C2 cells and human recombinant caspase-3 protein, while the thiol-reducing agent dithiothreitol (DTT) abolished H2S-induced persulfidation of caspase-3 and thereby prevented the antiapoptotic effect of H2S on caspase-3 in H9C2 cells. The mutation of caspase-3 C148S and C170S failed to block caspase-3 persulfidation by H2S in H9C2 cells. However, caspase-3 C163S mutation successfully abolished the effect of H2S on caspase-3 persulfidation and the corresponding protection of H9C2 cells. Collectively, these findings indicate that endogenous H2S persulfidates caspase-3 at cysteine 163, inhibiting its activity and cardiomyocyte apoptosis. Sufficient endogenous H2S might be necessary for the protection against myocardial cell apoptosis induced by DOX. The results of the study might open new avenues with respect to the therapy of DOX-stimulated cardiomyopathy.
Collapse
|
6
|
Vuong JT, Stein-Merlob AF, Cheng RK, Yang EH. Novel Therapeutics for Anthracycline Induced Cardiotoxicity. Front Cardiovasc Med 2022; 9:863314. [PMID: 35528842 PMCID: PMC9072636 DOI: 10.3389/fcvm.2022.863314] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 01/04/2023] Open
Abstract
Anthracyclines remain an essential component of the treatment of many hematologic and solid organ malignancies, but has important implications on cardiovascular disease. Anthracycline induced cardiotoxicity (AIC) ranges from asymptomatic LV dysfunction to highly morbid end- stage heart failure. As cancer survivorship improves, the detection and treatment of AIC becomes more crucial to improve patient outcomes. Current treatment modalities for AIC have been largely extrapolated from treatment of conventional heart failure, but developing effective therapies specific to AIC is an area of growing research interest. This review summarizes the current evidence behind the use of neurohormonal agents, dexrazoxane, and resynchronization therapy in AIC, evaluates the clinical outcomes of advanced therapy and heart transplantation in AIC, and explores future horizons for treatment utilizing gene therapy, stem cell therapy, and mechanism-specific targets.
Collapse
Affiliation(s)
- Jacqueline T. Vuong
- Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
| | - Ashley F. Stein-Merlob
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
| | - Richard K. Cheng
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Eric H. Yang
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Eric H. Yang,
| |
Collapse
|
7
|
Naaktgeboren WR, Binyam D, Stuiver MM, Aaronson NK, Teske AJ, van Harten WH, Groen WG, May AM. Efficacy of Physical Exercise to Offset Anthracycline-Induced Cardiotoxicity: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. J Am Heart Assoc 2021; 10:e021580. [PMID: 34472371 PMCID: PMC8649276 DOI: 10.1161/jaha.121.021580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Background Physical exercise is an intervention that might protect against doxorubicin‐induced cardiotoxicity. In this meta‐analysis and systematic review, we aimed to estimate the effect of exercise on doxorubicin‐induced cardiotoxicity and to evaluate mechanisms underlying exercise‐mediated cardioprotection using (pre)clinical evidence. Methods and Results We conducted a systematic search in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Cochrane's and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk‐of‐bias tools were used to assess the validity of human and animal studies, respectively. Cardiotoxicity outcomes reported by ≥3 studies were pooled and structured around the type of exercise intervention. Forty articles were included, of which 3 were clinical studies. Overall, in humans (sample sizes ranging from 24 to 61), results were indicative of exercise‐mediated cardioprotection, yet they were not sufficient to establish whether physical exercise protects against doxorubicin‐induced cardiotoxicity. In animal studies (n=37), a pooled analysis demonstrated that forced exercise interventions significantly mitigated in vivo and ex vivo doxorubicin‐induced cardiotoxicity compared with nonexercised controls. Similar yet slightly smaller effects were found for voluntary exercise interventions. We identified oxidative stress and related pathways, and less doxorubicin accumulation as mechanisms underlying exercise‐induced cardioprotection, of which the latter could act as an overarching mechanism. Conclusions Animal studies indicate that various exercise interventions can protect against doxorubicin‐induced cardiotoxicity in rodents. Less doxorubicin accumulation in cardiac tissue could be a key underlying mechanism. Given the preclinical evidence and limited availability of clinical data, larger and methodologically rigorous clinical studies are needed to clarify the role of physical exercise in preventing cardiotoxicity in patients with cancer. Registration URL: https://www.crd.york.ac.uk/prospero; Unique identifier: CRD42019118218.
Collapse
Affiliation(s)
- Willeke R Naaktgeboren
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - David Binyam
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Martijn M Stuiver
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Center for Quality of Life The Netherlands Cancer Institute Amsterdam The Netherlands.,Centre of Expertise Urban Vitality Faculty of Health Amsterdam University of Applied Sciences Amsterdam The Netherlands
| | - Neil K Aaronson
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Arco J Teske
- Department of Cardiology University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Wim H van Harten
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands.,Department of Health Technology and Services Research University of Twente Enschede The Netherlands
| | - Wim G Groen
- Division of Psychosocial Research and Epidemiology The Netherlands Cancer Institute Amsterdam the Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
8
|
Davoodi M, Zilaei Bouri S, Dehghan Ghahfarokhi S. Antioxidant Effects of Aerobic Training and Crocin Consumption on Doxorubicin-Induced Testicular Toxicity in Rats. J Family Reprod Health 2021; 15:28-37. [PMID: 34429734 PMCID: PMC8346744 DOI: 10.18502/jfrh.v15i1.6075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective: Doxorubicin (DOX) treatment has been reported to increase the risk of serious toxicity in testis, therefore the aim of the present study was to investigate the antioxidant effects of training and Crocin on doxorubicin-induced testicular toxicity in rats. Materials and methods:⊆max) 5 day/w. Also, groups 2 to 7 administered 2 mg/kg/w DOX intraperitoneal. The testes were removed and glutathione peroxidase (GPX), total antioxidant capacity (TAC) and protein carbonyl (PC) were analyzed using ELISA methods, one-way analysis of variance along with Bonferroni’s post hoc test were used for analysis in SPSS (P≤0.05). Results: The results of the present study showed that doxorubicin induced oxidative stress in testicular tissue by decreasing the level of GPX and TAC and increasing PC level (P≤0.05); TAC and GPX improved in all groups except groups 2 and 5, respectively, and their increase in the group 7 was significantly higher compared to other groups (P≤0.05). Increased PC levels were significantly reduced in the groups 5, 6 and 7. Conclusion: The increase in antioxidant levels in the concurrent Crocin and training group seems to be dose-dependent, but the oxidative stress in both Crocin and training groups of 10 and 50 mg/kg/d is associated with a decrease, but its modulation in the Crocin consumption group alone depends on the dose.
Collapse
Affiliation(s)
- Mohsen Davoodi
- Department of Physical Education & Sport Sciences, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Shirin Zilaei Bouri
- Department of Physical Education & Sport Sciences, Masjed-Soleiman Branch, Islamic Azad University, Masjed-Soleiman, Iran
| | | |
Collapse
|
9
|
Cancer therapy-related cardiac dysfunction: is endothelial dysfunction at the heart of the matter? Clin Sci (Lond) 2021; 135:1487-1503. [PMID: 34136902 DOI: 10.1042/cs20210059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Significant improvements in cancer survival have brought to light unintended long-term adverse cardiovascular effects associated with cancer treatment. Although capable of manifesting a broad range of cardiovascular complications, cancer therapy-related cardiac dysfunction (CTRCD) remains particularly common among the mainstay anthracycline-based and human epidermal growth factor receptor-targeted therapies. Unfortunately, the early asymptomatic stages of CTRCD are difficult to detect by cardiac imaging alone, and the initiating mechanisms remain incompletely understood. More recently, circulating inflammatory markers, cardiac biomarkers, microRNAs, and extracellular vesicles (EVs) have been considered as early markers of cardiovascular injury. Concomitantly, the role of the endothelium in regulating cardiac function in the context of CTRCD is starting to be understood. In this review, we highlight the impact of breast cancer therapies on the cardiovascular system with a focus on the endothelium, and examine the status of circulating biomarkers, including inflammatory markers, cardiac biomarkers, microRNAs, and endothelial cell-derived EVs. Investigation of these emerging biomarkers may uncover mechanisms of injury, detect early stages of cardiovascular damage, and elucidate novel therapeutic approaches.
Collapse
|
10
|
Navazani P, Vaseghi S, Hashemi M, Shafaati MR, Nasehi M. Effects of Treadmill Exercise on the Expression Level of BAX, BAD, BCL-2, BCL-XL, TFAM, and PGC-1α in the Hippocampus of Thimerosal-Treated Rats. Neurotox Res 2021; 39:1274-1284. [PMID: 33939098 DOI: 10.1007/s12640-021-00370-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 01/11/2023]
Abstract
Thimerosal (THIM) induces neurotoxic changes including neuronal death and releases apoptosis inducing factors from mitochondria to cytosol. THIM alters the expression level of factors involved in apoptosis. On the other hand, the anti-apoptotic effects of exercise have been reported. In this study, we aimed to discover the effect of three protocols of treadmill exercise on the expression level of mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), BCL-2-associated death (BAD), BCL-2-associated X (BAX), BCL-XL, and BCL-2 (a pro-survival BCL-2 protein) in the hippocampus of control and THIM-exposed rats. Male Wistar rats were used in this research. Real-time PCR was applied to assess genes expression. The results showed that THIM increased the expression of pro-apoptotic factors (BAD and BAX), decreased the expression of anti-apoptotic factors (BCL-2 and BCL-XL), and decreased the expression of factors involved in mitochondrial biogenesis (TFAM and PGC-1α). Treadmill exercise protocols reversed the effect of THIM on all genes. In addition, treadmill exercise protocols decreased the expression of BAD and BAX, increased the expression of BCL-2, and increased the expression of TFAM and PGC-1α in control rats. In conclusion, THIM induced a pro-apoptotic effect and disturbed mitochondrial biogenesis and stability, whereas treadmill exercise reversed these effects.
Collapse
Affiliation(s)
- Pouria Navazani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Shafaati
- Department of Cellular and Molecular Biology, Faculty of Basic Sciences, Hamadan Branch, Islamic Azad University, Hamadan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|