1
|
Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia. Sci Rep 2022; 12:2940. [PMID: 35190624 PMCID: PMC8861096 DOI: 10.1038/s41598-022-07016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
2,6-Dichlorophenol (2,6-DCP) is an aromatic compound with industrial importance in making insecticides, herbicides, and other organic compounds. However, it poses serious health and ecological problems. Microbial degradation of 2,6-DCP has been widely applied due to its effectiveness and eco-friendly characteristics. In this study, Trichoderma longibraciatum was isolated from an industrial soil sample in Dammam, Saudi Arabia using the enrichment method of mineral salt's medium (MSM) amended with 2,6-DCP. Morphological and molecular identification (using the internal transcribed spacer rRNA gene sequencing) of the 2,6-DCP tolerating fungal isolate were charactraized. The fungal isolate has demonstrated a tolerance to 2,6-DCP up to 300 mg/L. Mycelial growth and fungal sporulation were reduced with increasing 2,6-DCP concentrations up to 96 h incubation period. However, after 168 h incubation period, the fungal isolate recorded maximum growth at all the tested 2,6-DCP concentrations up to 150 mg/L. Carboxy methyl cellulase production by tested fungus was decreased by increasing 2,6-DCP concentration up to 75 mg/L. The biodegradation pattern of 2,6-DCP in GM liquid medium using GC–mass analysis as well as the degradation pathway was presented. This study provides a promising fungal isolate that could be used in the bioremediation process for chlorinated phenols in soil.
Collapse
|
2
|
Torán J, Blánquez P, Caminal G. Comparison between several reactors with Trametes versicolor immobilized on lignocellulosic support for the continuous treatments of hospital wastewater. BIORESOURCE TECHNOLOGY 2017; 243:966-974. [PMID: 28746994 DOI: 10.1016/j.biortech.2017.07.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Hospital wastewater is a major source of pharmaceutically active compounds (PhACs), which are not all removed in conventional wastewater treatment plants. White rot fungi can degrade PhACs, but their application has been limited to non-sterile conditions due to the competition with other microorganisms for growth. In this study, immobilization of Trametes versicolor on different lignocellulosic supports was studied as strategy to ensure fungal survival under continuous treatment conditions. A fluidized bed reactor and a trickling packed-bed reactor with T. versicolor immobilized on pallet wood were employed for the removal of ibuprofen, ketoprofen and naproxen. Best results were obtained with the trickling packed-bed reactor, which operated for 49days with high removal values in real hospital wastewater.
Collapse
Affiliation(s)
- J Torán
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - P Blánquez
- Departament d'Enginyeria Química Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - G Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
3
|
Immobilization of the white-rot fungus Anthracophyllum discolor to degrade the herbicide atrazine. AMB Express 2016; 6:104. [PMID: 27815917 PMCID: PMC5097060 DOI: 10.1186/s13568-016-0275-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022] Open
Abstract
Herbicides cause environmental concerns because they are toxic and accumulate in the environment, food products and water supplies. There is a need to develop safe, efficient and economical methods to remove them from the environment, often by biodegradation. Atrazine is such herbicide. White-rot fungi have the ability to degrade herbicides of potential utility. This study formulated a novel pelletized support to immobilize the white-rot fungus Anthracophyllum discolor to improve its capability to degrade the atrazine using a biopurification system (BS). Different proportions of sawdust, starch, corn meal and flaxseed were used to generate three pelletized supports (F1, F2 and F3). In addition, immobilization with coated and uncoated pelletized supports (CPS and UPS, respectively) was assessed. UPS-F1 was determined as the most effective system as it provided high level of manganese peroxidase activity and fungal viability. The half-life (t1/2) of atrazine decreased from 14 to 6 days for the control and inoculated samples respectively. Inoculation with immobilized A. discolor produced an increase in the fungal taxa assessed by DGGE and on phenoloxidase activity determined. The treatment improves atrazine degradation and reduces migration to surface and groundwater.
Collapse
|
4
|
Cao Y, Yang B, Song Z, Wang H, He F, Han X. Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:248-255. [PMID: 27151675 DOI: 10.1016/j.ecoenv.2016.04.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
Soil amendments of wheat straw biochar (BC), lignocellulosic substrate (LS), BC+LS, and BC+LS+BR (surfactant Brij30) were investigated for the first time in order to remedy polycyclic aromatic hydrocarbons (PAHs)-polluted soil using pilot scale microcosm incubation. We hypothesized that the removal of PAHs could be inhibited due to the adsorption and immobilization of biochar and the inhibition depends on the molecular-weight of PAHs. The removal rates of phenanthrene (PHE) and Benzo[a]pyrene (BaP) ranked as C=BC>LS=LS+BC=LS+BC+BR and C=BC=LS+BC+BR>LS=LS+BC. Wheat straw biochar inhibited the removal of PHE and accelerated BaP removal. The activity of Dehydrogenase (DH) was depressed by the addition of the biochar while the activity of polyphenol oxidase (PPO) was stimulated. Lignocellulose and surfactant are favourable to sustain soil microbiological activity and the removal of PAHs although the diversity of bacterial community was not significantly changed. The findings implied that the components of PAHs are necessary to consider when the amendments are implemented by associated biochar in PAH-polluted soil.
Collapse
Affiliation(s)
- Yanan Cao
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Baoshan Yang
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Ziheng Song
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Hui Wang
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Fei He
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Xuemei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| |
Collapse
|
5
|
Zhang C, Li M, Chen X, Li M. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:126-132. [PMID: 25933259 DOI: 10.1016/j.ecoenv.2015.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is ubiquitous in the environment because of its broad industrial use. The authors report that the most widely cultivated mushroom in the world (i.e., white-rot fungus, Pleurotus ostreatus) efficiently degraded 10mg/L of BPA in 7 days. Extracellular laccase was identified as the enzyme responsible for this activity. LC-MS analysis of the metabolites revealed the presence of both low- and high-molecular-weight products obtained via oxidative cleavage and coupling reactions, respectively. In particular, an analysis of the fatty acid composition and chemical structure of the fungal mycelium demonstrated that exposure to BPA resulted in no harmful effects on this edible fungus. The results provide a better understanding of the environmental fate of BPA and its potential impact on food crops.
Collapse
Affiliation(s)
- Chengdong Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control and College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Mingzhu Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control and College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoyan Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control and College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Cheng Y, Ekker M, Chan HM. Relative developmental toxicities of pentachloroanisole and pentachlorophenol in a zebrafish model (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 112:7-14. [PMID: 25463847 DOI: 10.1016/j.ecoenv.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Pentachloroanisole (PCA) and pentachlorophenol (PCP) are chlorinated aromatic compounds that have been found in the environment and in human populations. The objective of this study is to characterize the effects of PCA in comparison to those of PCP on development at environmental relevant levels using a fish model. Zebrafish embryos were exposed to 0.1, 1, 10, 100, 500, 1000 μg/L PCA and PCP respectively for 96 h. Malformation observation, LC50 testing for survival rate at 96 hours post fertilization (hpf) and EC50 testing for hatching rate at 72 hpf indicated that the developmental toxicity of PCP was about 15 times higher than that of PCA. PCP exposure at 10 μg/L resulted in elevated 3, 3', 5-triiodothyronine (T3) levels and decreased thyroxine (T4) levels, whereas PCA had no effects on T3 or T4 levels. PCP and PCA exposure at 1 and 10 μg/L showed possible hyperthyroid effects similar to that of T3, due to increased relative mRNA expression of synapsin I (SYN), iodothyronine deiodinase type III (Dio3), thyroid hormone receptor alpha a (THRαa) and thyroid hormone receptor beta (THRβ), and decreased expression of iodothyronine deiodinase type II (Dio2). The results indicate that both PCA and PCP exposure can cause morphological deformities, possibly affect the timing and coordination of development in the central nervous system, and alter thyroid hormone levels by disrupting thyroid hormone regulating pathways. However, the developmental toxicity of PCA is at least ten times lower than that of PCP. Our results on the relative developmental toxicities of PCA and PCP and the possible underlying mechanisms will be useful to support interpretation of envrionmental concentrations and body burden levels observed in human populations.
Collapse
Affiliation(s)
- Yan Cheng
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | - Hing Man Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
7
|
Zhou Z, Chen Y, Liu X, Zhang K, Xu H. Interaction of copper and 2,4,5-trichlorophenol on bioremediation potential and biochemical properties in co-contaminated soil incubated with Clitocybe maxima. RSC Adv 2015. [DOI: 10.1039/c5ra04861c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bioremediation of soil co-contaminated with heavy metal and organic pollutants has attracted considerable attention in recent years.
Collapse
Affiliation(s)
- Zhiren Zhou
- Key Laboratory of Bio-resource and Eco-environment (Ministry of Education)
- College of Life Science
- Sichuan University
- Chengdu
- China
| | - Yijiao Chen
- Key Laboratory of Bio-resource and Eco-environment (Ministry of Education)
- College of Life Science
- Sichuan University
- Chengdu
- China
| | - Xu Liu
- Key Laboratory of Bio-resource and Eco-environment (Ministry of Education)
- College of Life Science
- Sichuan University
- Chengdu
- China
| | - Ke Zhang
- Key Laboratory of Bio-resource and Eco-environment (Ministry of Education)
- College of Life Science
- Sichuan University
- Chengdu
- China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-environment (Ministry of Education)
- College of Life Science
- Sichuan University
- Chengdu
- China
| |
Collapse
|
8
|
Lladó S, Covino S, Solanas AM, Petruccioli M, D'annibale A, Viñas M. Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:35-43. [PMID: 25261758 DOI: 10.1016/j.jhazmat.2014.08.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Bacterial and fungal biodiversity throughout different biostimulation and bioaugmentation treatments applied to an industrial creosote-polluted soil were analyzed by means of polyphasic approach in order to gain insight into the microbial community structure and dynamics. Pyrosequencing data obtained from initial creosote polluted soil (after a biopiling step) revealed that Alpha and Gammaproteobacteria were the most abundant bacterial groups, whereas Fusarium and Scedosporium were the main fungal genera in the contaminated soil. At the end of 60-days laboratory scale bioremediation assays, pyrosequencing and DGGE data showed that (i) major bacterial community shifts were caused by the type of mobilizing agent added to the soil and, to a lesser extent, by the addition of lignocellulosic substrate; and (ii) the presence of the non-ionic surfactant (Brij 30) hampered the proliferation of Actinobacteria (Mycobacteriaceae) and Bacteroidetes (Chitinophagaceae) and, in the absence of lignocellulosic substrate, also impeded polycyclic aromatic hydrocarbons (PAHs) degradation. The results show the importance of implementing bioremediation experiments combined with microbiome assessment to gain insight on the effect of crucial parameters (e.g. use of additives) over the potential functions of complex microbial communities harbored in polluted soils, essential for bioremediation success.
Collapse
Affiliation(s)
- S Lladó
- Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain; Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | - S Covino
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | - A M Solanas
- Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain.
| | - M Petruccioli
- Department for Innovation in Biological, Agro-Food and Forest Systems [DIBAF], University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| | - A D'annibale
- Department for Innovation in Biological, Agro-Food and Forest Systems [DIBAF], University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| | - M Viñas
- GIRO Joint Research Unit IRTA-UPC, Institute of Research and Technology Food and Agriculture [IRTA], Torre Marimon, E-08140 Caldes de Montbui, Spain.
| |
Collapse
|
9
|
Lladó S, Covino S, Solanas AM, Viñas M, Petruccioli M, D'annibale A. Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. JOURNAL OF HAZARDOUS MATERIALS 2013; 248-249:407-14. [PMID: 23416485 DOI: 10.1016/j.jhazmat.2013.01.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 05/26/2023]
Abstract
High recalcitrant characteristics and low bioavailability rates due to aging processes can hinder high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) bioremediation in real industrial polluted soils. With the aim of reducing the residual fraction of total petroleum hydrocarbons (TPH) and (HMW-PAHs) in creosote-contaminated soil remaining after a 180-d treatment in a pilot-scale biopile, either biostimulation (BS) of indigenous microbial populations with a lignocellulosic substrate (LS) or fungal bioaugmentation with two strains of white-rot fungi (WRF) (i.e., Trametes versicolor and Lentinus tigrinus) were comparatively tested. The impact of bivalent manganese ions and two mobilizing agents (MAs) (i.e., Soybean Oil and Brij 30) on the degradation performances of biostimulated and bioaugmented microcosms was also compared. The results reveal soil colonization by both WRF strains was clearly hampered by an active native soil microbiota. In fact, a proper enhancement of native microbiota by means of LS amendment promoted the highest biodegradation of HMW-PAHs, even of those with five aromatic rings after 60 days of treatment, but HMW-PAH-degrading bacteria were specifically inhibited when non-ionic surfactant Brij 30 was amended. Effects of bioaugmentation and other additives such as non-ionic surfactants on the degrading capability of autochthonous soil microbiota should be evaluated in polluted soils before scaling up the remediation process at field scale.
Collapse
Affiliation(s)
- S Lladó
- Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
10
|
Ning D, Wang H. Involvement of cytochrome P450 in pentachlorophenol transformation in a white rot fungus Phanerochaete chrysosporium. PLoS One 2012; 7:e45887. [PMID: 23029295 PMCID: PMC3447798 DOI: 10.1371/journal.pone.0045887] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/27/2012] [Indexed: 12/22/2022] Open
Abstract
The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research.
Collapse
Affiliation(s)
- Daliang Ning
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
11
|
Çabuk A, Sidir YG, Aytar P, Gedikli S, Sidir İ. Dechlorination of chlorinated compounds by Trametes versicolor ATCC 200801 crude laccase and quantitative structure-activity relationship of toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1938-1947. [PMID: 22755541 DOI: 10.1080/03601234.2012.676517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chlorinated compounds constitute an important class of xenobiotics. Crude laccase was produced using Trametes versicolor ATCC (200801) in potato dextrose broth, with wheat bran as an inducing medium, and its ability to dechlorinate eight compounds was determined. The compounds were 2-chlorophenol, 4-chlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, heptachlor and pentachlorophenol. A range of parameters for the dechlorination of some compounds was tested, including incubation period, pH, initial substrate concentration, temperature, and enzyme quantity. The oxygen consumption was determined during each dechlorination process, under pre-determined optimum conditions. The changes in chemical structure of the compounds were also determined, by using FTIR analysis, following dechlorination of test chlorophenolics. Strong interactions were found to lead to the reactivity of hydroxyl groups in some cases and chlorine atoms were released from the benzene ring. The changes in compound toxicity were monitored before and after enzymatic treatment, using Microtox. Quantitative structure-activity relationships for the toxicity of the chlorinated compounds were developed. Consequently, the toxic activity of the test compounds was controlled by electrophilic index and electronic properties.
Collapse
Affiliation(s)
- Ahmet Çabuk
- Department of Biology, Eskişehir Osmangazi University, Eskişehir, Turkey.
| | | | | | | | | |
Collapse
|
12
|
Cea M, Jorquera M, Rubilar O, Langer H, Tortella G, Diez MC. Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2010; 181:315-323. [PMID: 20605683 DOI: 10.1016/j.jhazmat.2010.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 05/29/2023]
Abstract
Bioaugmentation is a promising technology to clean up sites contaminated with recalcitrant chemicals. White-rot fungi have proven to be effective in the degradation of pentachlorophenol. Here, we report the bioremediation of soil contaminated with pentachlorophenol (PCP) by Anthracophyllum discolor and its impact on the soil microbial community. In this study three types of microcosms were established: fresh soil (C(0)), fresh soil plus wheat straw (WS(0)) and, fresh soil plus wheat straw inoculated with A. discolor (WSAD(0)). Additionally, similar treatments and a control of sterile soil spiked with PCP (C(250), WS(250) and WSAD(250)) were used to evaluate the remediation and adsorption of PCP. The PCP removal, total microbial activity, and enzymatic activities were evaluated. This study also investigated the structure of soil microbial community by denaturing gradient gel electrophoresis (DGGE), identifying some of the dominant bacterial and fungal species. The results showed that PCP was effectively degraded in soils by A. discolor and by indigenous soil microorganisms. The addition of wheat straw increased the PCP degradation and enzymatic activities. Only laccase activity was negatively affected by PCP contamination. The PCP degradation was associated with changes in microbial communities, mainly stimulation of members of bacterial phylum Proteobacteria (Xanthomonadaceae, Burkholderiaceae and Enterobacteriaceae), and fungal phylum Ascomycota and Basidiomycota. This study shows the ability of A. discolor to degrade PCP from contaminated soil, and demonstrates that agricultural residues, such as wheat straw, can be used as growth substrate by microorganisms in PCP-contaminated soil, demonstrating a great potential of autochthonous microorganisms for soil remediation.
Collapse
Affiliation(s)
- M Cea
- Scientific and Technological Bioresources Nucleus, Universidad de La Frontera, Casilla, Temuco, Chile.
| | | | | | | | | | | |
Collapse
|
13
|
Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white-rot fungi. Biodegradation 2010; 22:31-41. [DOI: 10.1007/s10532-010-9373-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
14
|
Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9810-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Longoria A, Tinoco R, Vázquez-Duhalt R. Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. CHEMOSPHERE 2008; 72:485-490. [PMID: 18439646 DOI: 10.1016/j.chemosphere.2008.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 03/02/2008] [Accepted: 03/03/2008] [Indexed: 05/26/2023]
Abstract
Peroxidase transformations of widely distributed pollutants, tetra- and penta-chlorinated phenols and anilines, were studied using different peroxidases. Chloroperoxidase from Caldariomyces fumago was able to transform tetra- and penta-chlorinated phenols and anilines, while horseradish peroxidase, lignin peroxidase from Phanerochaete chrysosporium and versatile peroxidase from Bjerkandera adusta were able only to transform the halogenated phenols. Chloroperoxidase showed a specific activity on pentachlorophenol two orders of magnitude higher than lignin peroxidase and horseradish peroxidase, and one order of magnitude higher than versatile peroxidase. The main product from peroxidase oxidation in all cases was a polymeric and insoluble material. The insolubilization of halogenated phenols and anilines permits their removal, reduces their bioavailability, and thus reduces their environmental impact. The other minor products from the enzymatic transformation of highly chlorinated compounds were determined by mass spectrometry. Tetrachloroquinone, dimers and trimers of halogenated compounds were also identified. Chloroperoxidase was able to halogenate tetrachloroaniline to form pentachloroaniline.
Collapse
Affiliation(s)
- Adriana Longoria
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | |
Collapse
|
16
|
Ford CI, Walter M, Northcott GL, Di HJ, Cameron KC, Trower T. Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal in highly contaminated field soils. JOURNAL OF ENVIRONMENTAL QUALITY 2007; 36:1599-1608. [PMID: 17940259 DOI: 10.2134/jeq2007.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study was conducted to improve the pentachlorophenol (PCP) bioremediation ability of white-rot fungi in highly contaminated field soils by manipulating bioaugmentation variables. These were the dry weight percentage of fungal inoculum addition (31-175 g kg(-1)), PCP concentration (100-2137 mg kg(-1) PCP), fungal inoculum formulation, and time (1-7 wk). Five fungal isolates were used: the New Zealand isolates Trametes versicolor (L.: Fr.) HR131 and Trametes sp. HR577; the North American isolates Phanerochaete chrysosporium Burds. (two isolates) and Phanerochaete sordida (Karst.) Erikss. & Ryv. Pentachlorophenol removal, manganese peroxidase, and laccase activity, and the formation of chloroanisoles in the contaminated field soils were measured. The majority of PCP removed by the Trametes isolates was in the first week after bioaugmentation. The maximum PCP removal by the fungi varied from 50 to 65% from a 1065 mg kg(-1) PCP contaminated field soil. Pentachlorophenol was preferentially converted to pentachloroanisole (PCA) by the Phanerochaete isolates (>60%), while 2 to 9% of the PCP removed by two Trametes isolates was converted to PCA. A pH increase was measured following bioaugmentation that was dependent on PCP concentration, fungal inoculum addition, and formulation. This, together with rapid initial PCP removal, possibly changed the bioavailability of the remaining PCP to the fungi and significantly decreased the sequestering of PCP in the contaminated field soils. The research supports the conclusion that New Zealand Trametes spp. can rapidly remove PCP in contaminated field soils. Bioavailability and extractability of PCP in the contaminated field soil may significantly increase after bioaugmentation.
Collapse
Affiliation(s)
- Christopher I Ford
- Environment and Risk Management Group, The Horticulture and Food Research Inst. of New Zealand Ltd., PO Box 51, Lincoln, New Zealand
| | | | | | | | | | | |
Collapse
|
17
|
Ford CI, Walter M, Northcott GL, Di HJ, Cameron KC, Trower T. Fungal inoculum properties: extracellular enzyme expression and pentachlorophenol removal by New Zealand trametes species in contaminated field soils. JOURNAL OF ENVIRONMENTAL QUALITY 2007; 36:1749-1759. [PMID: 17965377 DOI: 10.2134/jeq2007.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study was conducted to improve the ability of indigenous New Zealand white-rot fungi to remove pentachlorophenol (PCP) from contaminated field soil. The effects of different bioaugmentation conditions on PCP removal and extracellular enzyme expression were measured in the laboratory. The conditions were fungal growth substrate and co-substrate composition, culture age, and Tween 80 addition to the contaminated soil. The fungi used were Trametes versicolor isolate HR131 and Trametes sp. isolate HR577. Maximum PCP removal was 70% after 7 wk from a 1043 mg kg(-1) PCP-contaminated soil inoculated with an 11-d-old fungal culture of T. versicolor isolate HR131. There was minimal production of undesirable pentachloroanisole by the fungi. Tween 80 addition had no affect on PCP removal. Poplar sawdust was more suitable as a fungal growth substrate and a co-substrate amendment for PCP removal and extracellular enzyme expression than the locally available pine and fir sawdust. Pentachlorophenol removal was not necessarily correlated with extracellular enzyme expression. The research results demonstrate that PCP biodegradation was affected by inoculum culture age, by the presence of a co-substrate amendment, and by growth substrate composition after white-rot fungal bioaugmentation into PCP-contaminated field soils.
Collapse
Affiliation(s)
- Christopher I Ford
- Environment and Risk Management Group, HortResearch, PO Box 51, Lincoln, New Zealand
| | | | | | | | | | | |
Collapse
|
18
|
Rubilar O, Feijoo G, Diez C, Lu-Chau TA, Moreira MT, Lema JM. Biodegradation of Pentachlorophenol in Soil Slurry Cultures by Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 2007. [DOI: 10.1021/ie061678b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- O. Rubilar
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - G. Feijoo
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - C. Diez
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - T. A. Lu-Chau
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - M. T. Moreira
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| | - J. M. Lema
- Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-16782 Santiago de Compostela, Spain, and Doctorate Programme Natural Resources, University of La Frontera, Temuco, Chile
| |
Collapse
|
19
|
McLellan I, Carvalho M, Silva Pereira C, Hursthouse A, Morrison C, Tatner P, Martins I, San Romão MV, Leitão M. The environmental behaviour of polychlorinated phenols and its relevance to cork forest ecosystems: a review. ACTA ACUST UNITED AC 2007; 9:1055-63. [PMID: 17909638 DOI: 10.1039/b701436h] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pentachlorophenol (PCP) has been used as a herbicide, biocide and preservative worldwide since the 1930s and as a result, extensive and prolonged contamination exists. The environmental impact increases when its many degradation products are taken into consideration. A number of chloroanisols and their related chlorophenols have been found in cork slabs collected from Portuguese oak tree forests before stopper manufacturing, and contamination by PCP and polychlorinated anisole (PCA) has been detected in Canadian forests. It is suggested that the use of polychlorinated phenols, in particular PCP, is thought to be a cause of the cork taint problem in wine, a major socio-economic impact not only for industry but on sensitive and highly biodiverse ecosystems. It also highlights particular issues relating to the regional regulation of potentially toxic chemicals and global economics world wide. To fully understand the impact of contamination sources, the mechanisms responsible for the fate and transport of PCP and its degradation products and assessment of their environmental behaviour is required. This review looks at the current state of knowledge of soil sorption, fate and bioavailability and identifies the challenges of degradation product identification and the contradictory evidence from field and laboratory observations. The need for a systematic evaluation of PCP contamination in relation to cork forest ecosystems and transfer of PCP between trophic levels is emphasised by discrepancies in bioaccumulation and toxicity. This is essential to enable long term management of not only transboundary contaminants, but also the sustainable management of socially and economically important forest ecosystems.
Collapse
Affiliation(s)
- Iain McLellan
- School of Engineering and Science, University of Paisley, Paisley, UK ,PA1 2BE
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Boyle D. Effects of pH and cyclodextrins on pentachlorophenol degradation (mineralization) by white-rot fungi. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2006; 80:380-6. [PMID: 16616987 DOI: 10.1016/j.jenvman.2005.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/25/2005] [Accepted: 09/30/2005] [Indexed: 05/08/2023]
Abstract
White-rot fungi (WRF) such as Trametes hirsuta completely degrade (mineralize) pentachlorophenol (PCP) and many other organopollutants. This has led to them being used to decontaminate various substrates (e.g. soil) through biorememediation. However, because PCP is a biocide, it can inhibit fungal growth and thereby its own degradation. It was hypothesized that substrate pH might affect PCP degradation, because when the pH is lower than 4.7 (the pKa for PCP) the phenol predominates, while at higher pH the phenate does. These two PCP species differ markedly in physical and biological properties. The effect of cyclodextrins was also investigated since it is known that the inclusion complexes these form with PCP differ in bioavailability and toxicity from non-complexed PCP. Tests were first made in liquid and agar media (where conditions are relatively easy to control), and then in a sawdust, because it is a common target matrix for WRF bioremediation. Results with the liquid and agar media showed that growth in the presence of inhibitory PCP concentrations decreased as the pH decreased, consistent with the phenol being more toxic. Growth in sawdust was less affected by PCP regardless of the pH, presumably because the PCP sorbed to the wood which decreased its bioavailability. Some cyclodextrins markedly decreased the PCP's toxicity in liquid, agar and sawdust media. Rates of PCP mineralization (measured from production of (14)CO(2) from (14)C PCP) in liquid cultures containing 0.5 mgkg(-1) PCP (a sub-inhibitory concentration) were similar from pH 2.5-7.5, indicating that the phenol and the phenate were equally degradable. Degradation of a growth inhibiting concentration on sawdust (1,000 mgkg(-1)) could be increased slightly by lowering the pH below the pKa, this increasing sorption to the wood. Degradation increased more when the pH was raised well above the pKa, presumably due to the phenate being less toxic and more soluble, making it more available to the degradative system. Although some cyclodextrins decreased growth inhibition, they also interfered with degradation. If this interference could be overcome, cyclodextrins could be used to increase the maximal PCP concentration that could be treated by WRF bioremediation.
Collapse
Affiliation(s)
- David Boyle
- Maritime MicroBiologicals Inc, Fredericton, NB, Canada.
| |
Collapse
|
21
|
Schmidt KR, Chand S, Gostomski PA, Boyd-Wilson KSH, Ford C, Walter M. Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnol Prog 2005; 21:377-85. [PMID: 15801774 DOI: 10.1021/bp049675m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of fungal inoculum properties on colonization of nonsterile soil by three isolates of the white-rot fungus Trametes versicolor was investigated. Fungal inoculum properties were examined in separate experiments and were fungal inoculum composition, age of fungal inoculum, concentration of the inoculum and inoculation method. The fungal inoculum composition study compared pine versus poplar sawdust as the basic carrier with varying amounts of corn grit, corn meal and starch. The age of the fungal inoculum studied ranged from 3 to 21 days. The inoculum concentration gradually increased from 0 to 50% (v/v). The study assessing inoculation method compared mixing with layering techniques. The effect of moisture conditions of soil, sawdust and sand in combination with two inoculation methods (mixing versus point source inoculation) on colonization by T. versicolor was also determined. Colonization of soil was always assessed visually and enzymatically monitoring mycelial growth, biological potential (fluorescein diacetate assay) and laccase levels. Generally, the three different assessment methods correlated (P < 0.05) with each other. A fungal inoculum based on pine sawdust supported white-rot fungal growth in soil better than a poplar sawdust basis. Colonization of soil by T. versicolor was improved by increasing the corn content of the fungal inoculum. Younger (<7 days old) fungal inoculum resulted in better soil colonization than older (>10 days). A strong correlation (P < 0.001) was observed between the amount of fungal inoculum used in the soil augmentation and white-rot fungal colonization of soil. Inoculation of the fungal inoculum into soil by mixing was preferable over application in layers or point source inoculation. Moisture level did not influence biological potential measurements, but affected mycelial growth and laccase expression.
Collapse
Affiliation(s)
- Kathrin R Schmidt
- Environment and Risk Management Group, HortResearch, P.O. Box 51, Lincoln, New Zealand
| | | | | | | | | | | |
Collapse
|