1
|
Drouillard KG, Campbell L, Otieno D, Achiya J, Getabu A, Mwamburi J, Sitoki L, Omondi R, Shitandi A, Owuor B, Njiru J, Bullerjahn G, Mckay RM, Otiso KM, Tebbs E. Increasing mercury bioaccumulation and biomagnification rates of Nile perch (Lates niloticus L.) in Winam Gulf, Lake Victoria, Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170059. [PMID: 38242476 DOI: 10.1016/j.scitotenv.2024.170059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The Nile perch (Lates niloticus L.) commercial fishery for Lake Victoria in East Africa is an important source of revenue and employment. We focused on shifts in food web structure and total mercury (THg) bioaccumulation and biomagnification in Nile perch, and lower food web items collected from Winam Gulf (Kenya) sampled 24 years apart (1998 and 2022). Stable isotope carbon (δ13C) values were higher in all species from 2022 compared to 1998. Stable nitrogen isotope (δ15N) values in baseline organisms were lower in 2022 compared to 1998. In Nile perch, δ15N values were correlated with total length, but the δ15N-length regressions were steeper in 1998 compared to 2022 except for one large (158 cm) Nile perch from 1998 with an uncharacteristically low δ15N value. Total Hg concentrations were lower in lower trophic species from 2022 compared to 1998. However, the THg bioaccumulation rate (as a function of fish length) in Nile perch was greater in 2022 compared to 1998 resulting in 24.2 % to 42.4 % higher wet weight dorsal THg concentrations in 2022 Nile perch for market slot size (50 to 85 cm) fish. The contrasting observations of increased THg bioaccumulation with size in 2022 against decreases in the rate of trophic increase with size and lower THg concentrations of lower food web items imply reduced fish growth and potential bioenergetic stressors on Winam Gulf Nile perch. All samples except 1 large Nile perch (139 cm total length collected in 2022) had THg concentrations below the European Union trade limit (500 ng/g wet weight). However, for more vulnerable individuals (women, children and frequent fish eaters), we recommend a decrease in maximum monthly meal consumption for 55-75 cm Nile perch from 16 meals per month calculated for 1998 to a limit of 8 meals per month calculated for 2022.
Collapse
Affiliation(s)
- Ken G Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.
| | - Linda Campbell
- School of the Environment, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Dennis Otieno
- Kenya Marine and Fisheries Research Institute, Kisumu, Kenya
| | - James Achiya
- Kenya Marine and Fisheries Research Institute, Kisumu, Kenya
| | | | - Job Mwamburi
- Kenya Marine and Fisheries Research Institute, Kisumu, Kenya
| | | | | | | | | | - James Njiru
- Kenya Marine and Fisheries Research Institute, Kisumu, Kenya
| | - George Bullerjahn
- Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - R Michael Mckay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Kefa M Otiso
- School of Earth, Environment and Society, Bowling Green State University, Bowling Green, OH, USA
| | - Emma Tebbs
- Department of Geography, King's College London, United Kingdom
| |
Collapse
|
2
|
Ye Z, Mao H, Driscoll CT. Impacts of anthropogenic emissions and meteorology on mercury deposition over lake vs land surface in upstate New York. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1590-1601. [PMID: 31586287 DOI: 10.1007/s10646-019-02113-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric deposition is a major input of mercury (Hg) to aquatic and terrestrial ecosystems. To evaluate Hg pollution mitigation strategies for inland lakes, the two Great Lakes (Ontario and Erie) adjacent to New York State (NYS), and rural land areas of Upstate New York, the relative contributions to atmospheric Hg deposition from anthropogenic emission reductions and meteorological variations were investigated using a regional three-dimensional chemical transport model with detailed Hg and bromine chemistry (CMAQ-newHg-Br). Our simulations suggested that NYS in-state emissions and the Northeastern US emission reductions from 2005 to 2011 did not significantly alter Hg wet and dry deposition in all study areas when averaged over time and space. However, such emission changes significantly altered intensive emission sources (>10 lb/year) with subsequent effects on deposition to nearby water bodies. For the Great Lakes, Hg dry deposition was enhanced by a factor of 2-5 in the adjacent model grids (within distances of ~12 km downwind), and the enhancements decreased to negligible values over ~50 km distances. Over land, anthropogenic emissions contributed 30% of the spatial variation in Hg dry deposition and 46% in ambient concentrations of gaseous oxidized Hg (GOM). Spatial and temporal variations in meteorology and foliar characteristics were found to affect both Hg wet and dry deposition. Convective precipitation significantly contributed to spatial and seasonal variations (~65%) in Hg wet deposition over both lake and land surfaces, whereas wind speed and surface heat flux were the main factors contributing to the spatial variation in Hg dry deposition over the lake surfaces through their impacts on dry deposition velocities of GOM and PBM. Leaf area index, which regulates deposition velocity, contributed 14% of the spatial variation in dry deposition flux over land. Variation in solar radiation, which influences photochemical formation of GOM and PBM, explained ~10% of the spatial variation over lake and land surfaces alike. Findings from our highly focused study suggested broad implications. Future climate change will likely serve to enhance Hg concentrations in biota via increases in Hg dry and wet deposition to varying degrees contingent on land surface type. Hence, liminating the health risks of Hg requires mitigation of both anthropogenic Hg emission hotspots and human-induced climate change.
Collapse
Affiliation(s)
- Zhuyun Ye
- Deparment of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Huiting Mao
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA.
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
3
|
Sarpong-Kumankomah S, Gibson MA, Gailer J. Organ damage by toxic metals is critically determined by the bloodstream. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Ordoñez S, Flores MU, Patiño F, Reyes IA, Islas H, Reyes M, Méndez E, Palacios EG. Kinetic Analysis of the Decomposition Reaction of the Mercury Jarosite in NaOH Medium. INT J CHEM KINET 2017. [DOI: 10.1002/kin.21116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sayra Ordoñez
- Área Académica de Ciencias de la Tierra y Materiales; Universidad Autónoma del Estado de Hidalgo; 42184 Hidalgo México
| | - Mizraim U. Flores
- Área de Electromecánica Industrial; Universidad Tecnológica de Tulancingo; 43642 Tulancingo Hidalgo México
| | - Francisco Patiño
- Ingeniería en Energía; Universidad Politécnica Metropolitana de Hidalgo; 43860 Tulancingo, Tolcayuca Hidalgo México
| | - Iván A. Reyes
- Catedrático CONACYT-Instituto de Metalurgia; Universidad Autónoma de San Luis Potosí; 78210 San Luis Potosí S.L.P. México
| | - Hernán Islas
- Área Académica de Ciencias de la Tierra y Materiales; Universidad Autónoma del Estado de Hidalgo; 42184 Hidalgo México
| | - Martín Reyes
- Área Académica de Ciencias de la Tierra y Materiales; Universidad Autónoma del Estado de Hidalgo; 42184 Hidalgo México
| | - Eliecer Méndez
- Área Académica de Ciencias de la Tierra y Materiales; Universidad Autónoma del Estado de Hidalgo; 42184 Hidalgo México
| | - Elia G. Palacios
- Departamento de Ingeniería en Metalurgia y Materiales; ESIQIE-IPN, UPALM; 07738 México, D.F. México
| |
Collapse
|
5
|
Zhou C, Cohen MD, Crimmins BA, Zhou H, Johnson TA, Hopke PK, Holsen TM. Mercury Temporal Trends in Top Predator Fish of the Laurentian Great Lakes from 2004 to 2015: Are Concentrations Still Decreasing? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7386-7394. [PMID: 28578575 DOI: 10.1021/acs.est.7b00982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mercury (Hg) concentration trends in top predator fish (lake trout and walleye) of the Great Lakes (GL) from 2004 to 2015 were determined by Kendall-Theil robust regression with a cluster-based age normalization method to control for the effect of changes in lake trophic status. When data from the GLs (except Lake Erie) are combined, a significant decreasing trend in the lake trout Hg concentrations was found between 2004 and 2015 with an annual decrease of 4.1% per year, consistent with the decline in regional atmospheric Hg emissions and water Hg concentrations. However, a breakpoint was detected with a significant decreasing slope (-8.1% per year) before the breakpoint (2010), and no trend after the breakpoint. When the lakes are examined individually, Lakes Superior and Huron, which are dominated by atmospheric Hg inputs and are more likely than the lower lakes to respond to declining emissions from areas surrounding the GL, have significant decreasing trends with rates between 5.2 and 7.8% per year from 2004 to 2015. These declining trends appear to be driven by decreasing regional atmospheric Hg emissions although they may be partly counterbalanced by other factors, including increasing local emissions, food web changes, eutrophication, and responses to global climate change. Lakes Michigan, Erie and Ontario may have been more impacted by these other factors and their trends changed from decreasing to non-decreasing or increasing in recent years.
Collapse
Affiliation(s)
- Chuanlong Zhou
- Department of Civil and Environmental Engineering, Clarkson University , Potsdam, New York 13676, United States
| | - Mark D Cohen
- Air Resources Laboratory, United States National Oceanic and Atmospheric Administration , College Park, Maryland 20740, United States
| | - Bernard A Crimmins
- Department of Civil and Environmental Engineering, Clarkson University , Potsdam, New York 13676, United States
| | - Hao Zhou
- Institute for a Sustainable Environment, Clarkson University , Potsdam, New York 13676, United States
| | - Timothy A Johnson
- Institute for a Sustainable Environment, Clarkson University , Potsdam, New York 13676, United States
| | - Philip K Hopke
- Institute for a Sustainable Environment, Clarkson University , Potsdam, New York 13676, United States
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University , Potsdam, New York 13676, United States
| |
Collapse
|
6
|
Ekawanti A, Krisnayanti BD. Effect of Mercury Exposure on Renal Function and Hematological Parameters among Artisanal and Small-scale Gold Miners at Sekotong, West Lombok, Indonesia. J Health Pollut 2015; 5:25-32. [PMID: 30524774 PMCID: PMC6221489 DOI: 10.5696/2156-9614-5-9.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Mercury is a toxic metal with effects on human health ranging from acute to chronic in a very short time of exposure. Artisanal and small-scale gold mining (ASGM) is the main source of direct human exposure to mercury. Human exposure to mercury (Hg) can occur through both direct inhalation of mercury vapor and consumption of material taken from contaminated areas. To protect the health of ASGM workers and surrounding communities, a health assessment of mercury exposure and its effects is urgently needed. However, analysis of hair and urine samples as a proof test for mercury toxicity is very expensive. Therefore other tests must be considered to identify the first symptoms of mercury toxicity in miners and the surrounding community. OBJECTIVES The present study aimed to determine the effects of mercury exposure on renal function along with the hematological parameters of gold miners and the community as a first indication of mercury exposure symptoms. METHODS The study was designed as a purposive field sampling study and was conducted in 3 main villages in Sekotong District, West Lombok Regency, West Nusa Tenggara Province, Indonesia. The 100 subjects were miners that have been exposed to mercury for at least 5 years and their wives and children (non-miners) who lived around the gold processing area. Blood and urine samples were then obtained from the subjects. The miners and non-miners were questioned about their mercury exposure over the previous 5 years, duration of exposure, and how mercury was handled in their daily life. Blood and urine samples were collected at the time of the study, around 10 ml of urine and 0.1 ml of blood (2 drops) were collected per subject. In order to determine the parallel results between the blood-urine and hair results, hair from the miners was collected at a different time for analysis. RESULTS The results showed that the subjects had low proteinuria, hemoglobin and hematocrit concentrations as a consequence of chronic mercury intoxication. This finding was parallel with results of high mercury concentrations in urine (>7 - 273.3 μg/l) and miners' hair (>1 - 12.93 μg/g). Miners and non-miners in the exposure area were found to have proteinuria levels of more than 0.3 g/L. Proteinuria (≥0.3 g/L) was observed in 92.6% of miners and 72.4% of non-miners. CONCLUSIONS The results of the present study suggest that urinalysis of proteinuria and hemoglobin values can be used as a screening test to detect renal impairment due to mercury intoxication.
Collapse
|
7
|
Chen Y, Wang R, Shen H, Li W, Chen H, Huang Y, Zhang Y, Chen Y, Su S, Lin N, Liu J, Li B, Wang X, Liu W, Coveney RM, Tao S. Global mercury emissions from combustion in light of international fuel trading. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1727-1735. [PMID: 24433051 DOI: 10.1021/es404110f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1° × 0.1° resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000.
Collapse
Affiliation(s)
- Yilin Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Madenjian CP, David SR, Krabbenhoft DP. Trophic transfer efficiency of methylmercury and inorganic mercury to lake trout Salvelinus namaycush from its prey. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 63:262-269. [PMID: 22552852 DOI: 10.1007/s00244-012-9767-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
Based on a laboratory experiment, we estimated the net trophic transfer efficiency of methylmercury to lake trout Salvelinus namaycush from its prey to be equal to 76.6 %. Under the assumption that gross trophic transfer efficiency of methylmercury to lake trout from its prey was equal to 80 %, we estimated that the rate at which lake trout eliminated methylmercury was 0.000244 day(-1). Our laboratory estimate of methylmercury elimination rate was 5.5 times lower than the value predicted by a published regression equation developed from estimates of methylmercury elimination rates for fish available from the literature. Thus, our results, in conjunction with other recent findings, suggested that methylmercury elimination rates for fish have been overestimated in previous studies. In addition, based on our laboratory experiment, we estimated that the net trophic transfer efficiency of inorganic mercury to lake trout from its prey was 63.5 %. The lower net trophic transfer efficiency for inorganic mercury compared with that for methylmercury was partly attributable to the greater elimination rate for inorganic mercury. We also found that the efficiency with which lake trout retained either methylmercury or inorganic mercury from their food did not appear to be significantly affected by the degree of their swimming activity.
Collapse
Affiliation(s)
- C P Madenjian
- Great Lakes Science Center, US Geological Survey, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
9
|
Wiener JG, Evers DC, Gay DA, Morrison HA, Williams KA. Mercury contamination in the Laurentian Great Lakes region: introduction and overview. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 161:243-251. [PMID: 22000118 DOI: 10.1016/j.envpol.2011.08.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
The Laurentian Great Lakes region of North America contains substantial aquatic resources and mercury-contaminated landscapes, fish, and wildlife. This special issue emanated from a bi-national synthesis of data from monitoring programs and case studies of mercury in the region, here defined as including the Great Lakes, the eight U.S. states bordering the Great Lakes, the province of Ontario, and Lake Champlain. We provide a retrospective overview of the regional mercury problem and summarize new findings from the synthesis papers and case studies that follow. Papers in this issue examine the chronology of mercury accumulation in lakes, the importance of wet and dry atmospheric deposition and evasion to regional mercury budgets, the influence of land-water linkages on mercury contamination of surface waters, the bioaccumulation of methylmercury in aquatic foods webs; and ecological and health risks associated with methylmercury in a regionally important prey fish.
Collapse
Affiliation(s)
- James G Wiener
- University of Wisconsin-La Crosse, River Studies Center, 1725 State Street, La Crosse, WI 54601, USA.
| | | | | | | | | |
Collapse
|
10
|
Gailer J. Probing the bioinorganic chemistry of toxic metals in the mammalian bloodstream to advance human health. J Inorg Biochem 2011; 108:128-32. [PMID: 22209021 DOI: 10.1016/j.jinorgbio.2011.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 11/17/2022]
Abstract
The etiology of numerous grievous human diseases, including Alzheimer's and Parkinson's Disease is not well understood. Conversely, the concentration toxic metals and metalloids, such as As, Cd, Hg and Pb in human blood of the average population is well established, yet we know strikingly little about the role that they might play in the etiology of disease processes. Establishing functional connections between the chronic exposure of humans to these and other inorganic pollutants and the etiology of certain human diseases is therefore viewed by many as one of the greatest challenges in the post-genomic era. Conceptually, this task requires us to uncover hitherto unknown biomolecular mechanisms which must explain how small doses of a toxic metal/metalloid compound (low μg per day) - or mixtures thereof - may eventually result in a particular human disease. The biological complexity that is inherently associated with mammals, however, makes the discovery of these mechanisms a truly monumental task. Recent findings suggest that a better understanding of the bioinorganic chemistry of inorganic pollutants in the mammalian bloodstream represents a fruitful strategy to unravel relevant biomolecular mechanisms. The adverse effect(s) that toxic metals/metalloid compounds exert on the transport of essential ultratrace elements to internal organs appear particularly pertinent. A brief overview of the effect that arsenite and Hg(2+) exert on the mammalian metabolism of selenium is presented.
Collapse
Affiliation(s)
- Jürgen Gailer
- Department of Chemistry, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
11
|
Sadraddini S, Ekram Azim M, Shimoda Y, Mahmood M, Bhavsar SP, Backus SM, Arhonditsis GB. Temporal PCB and mercury trends in Lake Erie fish communities: a dynamic linear modeling analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2203-2214. [PMID: 21835464 DOI: 10.1016/j.ecoenv.2011.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/01/2011] [Accepted: 07/24/2011] [Indexed: 05/31/2023]
Abstract
We performed dynamic linear modeling analysis on fish contaminant data collected from the Ontario Ministry of the Environment and Environment Canada to examine long-term trends of total mercury (THg) and polychlorinated biphenyls (PCBs) in Lake Erie. Several sport fish species (walleye, smallmouth bass, rainbow trout) with differences in their diet habits, food competition strategies and foraging patterns are characterized by weakly increasing trends of their THg levels in Lake Erie after the mid- or late 1990s. Similarly, our analysis shows that the decline rates of the PCB body burdens in white bass, smallmouth bass, freshwater drum and whitefish have slowed down or have switched to weakly increasing rates over the last decade. Our analysis also provides evidence that the rainbow trout and coho salmon PCB concentrations have been decreasing steadily but the associated rates were fairly weak. The systematic shifts in energy trophodynamics along with the food web alterations induced from the introduction of non-native species, the new role of the sediments as a net contaminant source, and the potentially significant fluxes from the atmosphere stand out as some of the hypotheses proposed to explain the limited Lake Erie response in recent years to the various contamination mitigation strategies.
Collapse
Affiliation(s)
- Somayeh Sadraddini
- Ecological Modeling Laboratory, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C1A4, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Bhavsar SP, Awad E, Mahon CG, Petro S. Great Lakes fish consumption advisories: is mercury a concern? ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1588-1598. [PMID: 21748390 DOI: 10.1007/s10646-011-0731-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2011] [Indexed: 05/31/2023]
Abstract
The majority of the restrictive fish consumption advisories for the Canadian waters of the Great Lakes issued by the Ontario Ministry of the Environment, Canada based on the most restrictive contaminant, are attributed to polychlorinated biphenyls (PCBs) and dioxins/furans. Mercury currently causes about <1-2.5% and 9-16% of the restrictive advisories for the general population (GP) and sensitive population of children under 15 and women of child-bearing age (SP), respectively (the St. Lawrence River is not considered here). Toxaphene causes minor restrictions. At present it is not clear that if PCBs and dioxins/furans were to decrease below their fish consumption advisory guidelines, current fish mercury levels would replace some, most or all of the consumption restrictions. In order to examine this, location-, species- and size-specific fish consumption advisories were calculated for a "mercury only" scenario by disregarding the presence of the other contaminants. In the absence of other contaminants, mercury would replace some of the current advisories caused by other contaminants; however, the overall advisories would be minimally to moderately restrictive (<1-7% for GP; 13-32% for SP). Almost half of the Great Lake blocks considered here would have more than double the unrestricted consumption advisories than they currently have, with Lake Ontario showing the greatest improvement. Certain size ranges of each species across the main basins of the Canadian waters of the Great Lakes would be deemed safe for unrestricted consumption. However, at least some sizes of a number of species from certain locations of each lake would still have "do not eat" advisories issued for the SP, although these restrictions would be minimal for Lake Erie. These results suggest that the current mercury levels in the Canadian Great Lakes fish are of very minor concern for the GP and of moderate concern for the SP.
Collapse
Affiliation(s)
- Satyendra P Bhavsar
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
13
|
Zananski TJ, Holsen TM, Hopke PK, Crimmins BS. Mercury temporal trends in top predator fish of the Laurentian Great Lakes. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1568-1576. [PMID: 21792660 DOI: 10.1007/s10646-011-0751-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/16/2011] [Indexed: 05/31/2023]
Abstract
Mercury (Hg) contamination is widespread in the Laurentian Great Lakes region and is a serious environmental concern. In anaerobic environments such as lake sediments, mercury is transformed into methylmercury (MeHg) and can biomagnify up the food chain to toxic concentrations. The Great Lakes Fish Monitoring Program (GLFMP), administered by the US EPA Great Lakes National Program Office (GLNPO), aims to monitor temporal trends of mercury in the five Great Lakes using top predator fish as biomonitors. Total Hg (THg) concentrations were measured in Great Lake fish collected between 1999 and 2009. Single factor ANOVA determined that average fish THg concentrations over this time period in the five lakes were significantly different from one another in the order of Superior > Huron > Michigan > Ontario > Erie. By fitting the data to three different models (linear, quadratic, and two-segment piecewise), it was determined that Hg concentrations in top predator fish (lake trout, or walleye in Lake Erie) are currently increasing in Lake Erie and the Apostle Island sampling site in Lake Superior. Significant decreasing trends are evident in Lakes Michigan, Ontario, and the Rockport sampling site in Lake Huron, although all of the lakes exhibit elevated concentrations in fish compared to historic concentrations. As new Hg emission controls are implemented in the US, continued monitoring of Hg in Great Lakes fish will be needed to determine if they influence the current concentrations and trends.
Collapse
Affiliation(s)
- Tiffany J Zananski
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699-5708, USA
| | | | | | | |
Collapse
|
14
|
Adedigba MA, Nwhator SO, Afon A, Abegunde AA, Bamise CT. Assessment of dental waste management in a Nigerian tertiary hospital. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2010; 28:769-777. [PMID: 20124316 DOI: 10.1177/0734242x09356017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study assessed the practice of disposing of waste from the eight dental clinics of Obafemi Awolowo University Teaching Complex, Ile-Ife, Nigeria. All the cleaners (14) in the hospitals were surveyed through questionnaire. Information obtained from the cleaners included socio-economic characteristics (biodata), personal protection, facilities available for them to work with and job satisfaction. Two soil samples were obtained from the open dump site (0.15 and 0.30 m depth) and two water samples were also collected (at 0.00 and 50.00 m) within the vicinity of the dump site. Both the soil and water samples were taken to the central science laboratory for chemical analyses. Ten (71.4%) of the 14 cleaners were not satisfied with their job. The laboratory findings suggested a very high content of lead, chromium, mercury, cadmium and manganese in both soil and water samples in comparison with the Nigerian Federal Environmental Protection Agency standards. The study concludes that the use of tooth-coloured restorative materials and digital X-ray facility to serve as alternatives to the generation of these wastes is recommended and that farming activities should not be allowed in the area until an audit of the soil and water have been performed.
Collapse
Affiliation(s)
- Michael A Adedigba
- Preventive & Community Dentistry, Obafemi Awolowo University, Ile-Ife, Nigeria.
| | | | | | | | | |
Collapse
|
15
|
Bhavsar SP, Gewurtz SB, McGoldrick DJ, Keir MJ, Backus SM. Changes in mercury levels in Great Lakes fish between 1970s and 2007. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3273-3279. [PMID: 20350001 DOI: 10.1021/es903874x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A number of initiatives have curtailed anthropogenic mercury emissions in North America over the last two decades; however, various factors, including long-range transport of global emissions, may complicate the response of fish mercury levels to remedial actions. Since the Great Lakes of North America are together the largest surface freshwater body in the world and are under the influence of many complicating factors, trends of mercury in fish from the Great Lakes can reflect the overall impact of mercury management actions at local, regional, and perhaps global scales. Here we present a comprehensive view of mercury trends in Canadian Great Lakes fish using two large (total 5807 samples), different (fillet and whole fish), and long-term (1970s-2007) monitoring data sets. The spatial differences in lake trout and walleye mercury levels during this period have generally been within a factor of 2-3 with Lakes Erie and Superior having the lowest and highest concentrations, respectively. These spatial differences have diminished in the recent years (2000-2007). The concentrations have generally declined over the three decades (mid-1970s to 2007); however, in recent years, the concentration trends are flat in Lake Ontario walleye and appear to be increasing in Lake Erie walleye. There was a mismatch in the Lake Ontario lake trout and walleye temporal trends, which shows the importance of considering more than one fish species for proper spatial/temporal trend assessments.
Collapse
Affiliation(s)
- Satyendra P Bhavsar
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Toronto, Ontario M9P 3V6, Canada.
| | | | | | | | | |
Collapse
|
16
|
Jahromi EZ, Gailer J. Probing bioinorganic chemistry processes in the bloodstream to gain new insights into the origin of human diseases. Dalton Trans 2009:329-36. [PMID: 20023963 DOI: 10.1039/b912941n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the context of elucidating the origin of human diseases, past poisoning epidemics have revealed that exceedingly small doses of inorganic environmental pollutants can result in dramatic effects on human health. Today, numerous organic and inorganic pollutants have been quantified in human blood, but the interpretation of these concentrations remains--from a public health point of view--problematic. Conversely, the biomolecular origin for several grievous human diseases is essentially unknown. Taken together and viewed in the context of recent bioinorganic research findings, the established human blood concentrations of toxic metals and metalloids may be functionally connected with the etiology of specific human diseases. To unravel the underlying biomolecular mechanisms, and taking into account the basic flow of dietary matter through mammalian organisms, a better understanding of the bioinorganic chemistry of toxic metals and metalloid compounds in the bloodstream is emerging as a promising avenue for future research. To this end, the concerted application of modern proteomic methodologies, synchrotron-based X-ray absorption spectroscopy and established spectroscopic techniques will contribute to better define the role that blood-based bioinorganic chemistry-related processes play in the origin of human diseases. The application of this and other modern proteomic methodologies could contribute to a better understanding of the role that blood-based bioinorganic chemistry-related processes play in the origin and etiology of human diseases.
Collapse
Affiliation(s)
- Elham Zeini Jahromi
- Department of Chemistry and BSc Environmental Science Program, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
17
|
Restoration of posterior teeth in clinical practice: evidence base for choosing amalgam versus composite. Dent Clin North Am 2009; 53:71-6, ix. [PMID: 19215745 DOI: 10.1016/j.cden.2008.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This article reviews the current use of amalgam versus resin composite in posterior restorations and the evidence-base for choosing between these two treatment options. While much research has been published on the issue of the clinical use of amalgam versus resin composite, there are several issues that limit the true evidence-base on the subject. Furthermore, while the majority of published studies on posterior composites would seem to indicate equivalent clinical performance of resin composite to amalgam restorations, the studies that should be weighted much more heavily (randomized controlled trials) do not support the slant of the rest of the literature. As part of an evidence-based approach to private practice, clinicians need to be aware of the levels of evidence in the literature and need to properly inform patients of the true clinical outcomes that are associated with the use of amalgam versus resin composite for posterior restorations, so that patients are themselves making informed decisions about their dental care.
Collapse
|
18
|
Bessbousse H, Rhlalou T, Verchère JF, Lebrun L. Novel Metal-Complexing Membrane Containing Poly(4-vinylpyridine) for Removal of Hg(II) from Aqueous Solution. J Phys Chem B 2009; 113:8588-98. [DOI: 10.1021/jp900863f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haad Bessbousse
- FRE 3101 CNRS, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France, and Université Hassan Ier, FST de Settat, BP 577, Settat, Morocco
| | - Thouria Rhlalou
- FRE 3101 CNRS, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France, and Université Hassan Ier, FST de Settat, BP 577, Settat, Morocco
| | - Jean-François Verchère
- FRE 3101 CNRS, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France, and Université Hassan Ier, FST de Settat, BP 577, Settat, Morocco
| | - Laurent Lebrun
- FRE 3101 CNRS, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France, and Université Hassan Ier, FST de Settat, BP 577, Settat, Morocco
| |
Collapse
|
19
|
Ros-Lis J, Casasús R, Comes M, Coll C, Marcos M, Martínez-Máñez R, Sancenón F, Soto J, Amorós P, Haskouri J, Garró N, Rurack K. A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry 2008; 14:8267-78. [DOI: 10.1002/chem.200800632] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|