1
|
Singh S, Kumar A, Pandit S, Roy A, Lahiri D, Alghamdi S, Almehmadi M, Alsaiari AA, Allahyani M. Utilizing a Fe 3O 4 Magnetite Nanoparticle for Anode Modification in a Microbial Desalination Cell to Treat Saltwater. Appl Biochem Biotechnol 2024; 196:7861-7876. [PMID: 38573532 DOI: 10.1007/s12010-024-04925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
The microbial desalination cell (MDC) is a bio-electrochemical system that exhibits the ability to oxidize organic compounds, produce energy, and decrease the saline concentrations within the desalination chamber. The selective removal of ions from the desalination chamber is significantly influenced by the anion and cation exchange membranes. In this study, a three-chamber microbial desalination cell was developed to treat seawater using a synthesize Fe3O4 magnetite nanoparticle (MNP)-modified anode. The impact of different performance parameters, such as temperature, pH, and concentrations of NPs, has been investigated in order to assess the performance of three-chamber MDCs in terms of energy recovery and salt removal. The evaluation criteria of the system included multiple factors such as chemical oxygen demand (COD), Coulombic efficiency (CE), desalination efficiency, as well as system aspects including voltage generation and power density. The highest COD% removal efficiency was 74% at 37 °C, pH = 7, and 30 g/L salt concentration with an optimized NPs concentration of 2.0 mg/cm2 impregnated on anode. The maximum Coulombic efficiency was 10.3% with the maximum power density of 4.3 W/m3. The effect of the nanoparticle concentration impregnated on the anode was clarified by the primary factor of analysis. This research has revealed consistent patterns in the enhancement of voltage generation, COD, and Coulombic efficiencies when incorporating higher concentrations of nanoparticles on the anode at a certain point.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, U.P, India
| | - Ankit Kumar
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, U.P, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, U.P, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.
| | - Arpita Roy
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- Centre for Research impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, University Area, Plot No. III - B/5, New Town, Action Area - III, Kolkata, West Bengal, 700160, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
2
|
Dell'Anno F, Joaquim van Zyl L, Trindade M, Buschi E, Cannavacciuolo A, Pepi M, Sansone C, Brunet C, Ianora A, de Pascale D, Golyshin PN, Dell'Anno A, Rastelli E. Microbiome enrichment from contaminated marine sediments unveils novel bacterial strains for petroleum hydrocarbon and heavy metal bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120772. [PMID: 36455775 DOI: 10.1016/j.envpol.2022.120772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.
Collapse
Affiliation(s)
- Filippo Dell'Anno
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Leonardo Joaquim van Zyl
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Marla Trindade
- Department of Biotechnology, Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, Cape Town, South Africa.
| | - Emanuela Buschi
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Milva Pepi
- Department of Integrative Marine Ecology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Naples, Italy.
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica "Anton Dohrn", Fano Marine Centre, Viale Adriatico 1-N, 61032, Fano, Italy.
| |
Collapse
|
3
|
Rahimi M, Salehi E, Mandooie M, Khalili N. Adsorption/Ozonation Integration for Intensified Ethyl Acetate Plant Wastewater Treatment: Process Optimization and Sensitivity Analysis Assessment. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Azevedo GA, Heinrichs MC, Moraes ÂM. Cashew tree gum for biomaterials engineering: A versatile raw material in consolidation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gabriel Assis Azevedo
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
| | - Maria Carolina Heinrichs
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical Engineering University of Campinas Campinas São Paulo Brazil
| |
Collapse
|
5
|
Municipal Landfill Leachate Treatment and Sustainable Ethanol Production: A Biogreen Technology Approach. Microorganisms 2022; 10:microorganisms10050880. [PMID: 35630324 PMCID: PMC9145719 DOI: 10.3390/microorganisms10050880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/20/2022] Open
Abstract
Sustainable material sources are an important agenda to protect the environment and to meet human needs. In this study, Scenedesmus sp. was used to treat municipal landfill leachate via batch and continuous cultivation modes to protect the environment and explore sufficient biomass production for bioethanol production using Saccharomyces cerevisiae. Physicochemical characteristics of leachate were determined for the phases before, during, and after the process. Batch and continuous cultivation were used to treat raw leachate to determine optimum conditions for treatment. Then, the biomass of Scenedesmus sp. with and without sonication was used as a substrate for ethanol production. Sonication was carried out for biomass cell disruption for 20 min at a frequency of 40 kHz. Through batch cultivation mode, it was found that pH 7 was the optimum condition for leachate treatment. Continuous cultivation mode had the highest removal values for COD, phosphorus, and carbohydrate, namely 82.81%, 79.70%, and 84.35%, respectively, among other modes. As for ethanol production, biomass without sonication with 9.026 mg·L−1 ethanol, a biomass concentration of 3.300 µg·L−1, and pH 5 were higher than biomass with sonication with 5.562 mg·L−1 ethanol, a biomass concentration of 0.110 µg·L−1, and pH 5. Therefore, it is evident that the leachate has the potential to be treated by Scenedesmus sp. and converted to bioethanol in line with the concept of sustainable materials.
Collapse
|
6
|
Influence of Particle Size of River Sand on the Decontamination Process in the Slow Sand Filter Treatment of Micro-Polluted Water. WATER 2022. [DOI: 10.3390/w14010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Slow sand filters (SSFs) have been widely used in the construction of water plants in rural areas. It is necessary to find river sand of suitable particle size to improve SSF treatment of micro-polluted water so as to ensure the effective and long-term operation of these plants. In this study, SSF1# (particle size of 0.1–0.5 mm), SSF2# (particle size of 0.5–1 mm), and SSF3# (particle size of 1–1.5 mm) were selected. The physical absorption, CODMn and NH4+-N removal effect, and microbial community were analyzed. According to Langmuir and Freundlich adsorption model fitting, the smaller the particle size of the river sand, the more pollutants are adsorbed under the same conditions. SSF1# has the shortest membrane-forming time, highest CODMn and NH4+-N removal rate, and highest Shannon estimator, indicating that there are more abundant microbial species in the biofilm. Mesorhizobium, Pannonibacter, Pseudoxanthomonas, Aquabacterium, Devosia, and other bacteria have different proportions in each system, each forming its own stable biological chain system. The effluent quality of the three SSFs can meet drinking water standards. However, river sand with a particle size range of 0.1–0.5 mm is easily blocked, and thus the recommended size range for SSF is 0.5–1 mm.
Collapse
|
7
|
Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review. Int J Mol Sci 2017; 18:ijms18071429. [PMID: 28677659 PMCID: PMC5535920 DOI: 10.3390/ijms18071429] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.
Collapse
|
8
|
Welz PJ, Holtman G, Haldenwang R, le Roes-Hill M. Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: implications for biological wastewater treatment and land application. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2036-2050. [PMID: 27842023 DOI: 10.2166/wst.2016.226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wineries generate 0.2 to 4 L of wastewater per litre of wine produced. Many cellars make use of irrigation as a means of disposal, either directly or after storage. In order to consider the potential downstream impacts of storage/no storage, this study critically compared the seasonal organic and inorganic composition of fresh winery effluent with effluent that had been stored in waste stabilisation ponds. Ethanol and short chain volatile fatty acids were the main contributors to chemical oxygen demand (COD), with average concentrations of 2,086 and 882 mgCOD/L, respectively. Total phenolics were typically present in concentrations <100 mg/L. The concentration of sodium from cleaning agents was higher in the non-crush season, while the converse was true for organics. The effluent was nitrogen-deficient for biological treatment, with COD:N ratios of 0.09 to 1.2. There was an accumulation of propionic and butyric acid during storage. The composition of the pond effluent was more stable in character, and it is possible that bacterial and algal nitrogen fixation in such systems may enhance biological wastewater treatment by natural nitrogen supplementation. It is therefore recommended that if land requirements can be met, winery effluent should be stored in ponds prior to treatment.
Collapse
Affiliation(s)
- P J Welz
- Biocatalysis and Technical Biology (BTB) Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa E-mail:
| | - G Holtman
- Department of Civil Engineering, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa
| | - R Haldenwang
- Department of Civil Engineering, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa
| | - M le Roes-Hill
- Biocatalysis and Technical Biology (BTB) Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa E-mail:
| |
Collapse
|
9
|
Ioannou LA, Li Puma G, Fatta-Kassinos D. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:343-68. [PMID: 25636058 DOI: 10.1016/j.jhazmat.2014.12.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 05/28/2023]
Abstract
Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review.
Collapse
Affiliation(s)
- L A Ioannou
- Department of Civil Engineering and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - G Li Puma
- Environmental Nanocatalysis and Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - D Fatta-Kassinos
- Department of Civil Engineering and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
10
|
Minor differences in sand physicochemistry lead to major differences in bacterial community structure and function after exposure to synthetic acid mine drainage. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0454-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Ramond JB, Welz PJ, Tuffin MI, Burton SG, Cowan DA. Selection of diazotrophic bacterial communities in biological sand filter mesocosms used for the treatment of phenolic-laden wastewater. MICROBIAL ECOLOGY 2013; 66:563-570. [PMID: 23828521 DOI: 10.1007/s00248-013-0258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/12/2013] [Indexed: 06/02/2023]
Abstract
Agri effluents such as winery or olive mill wastewaters are characterized by high phenolic concentrations. These compounds are highly toxic and generally refractory to biodegradation. Biological sand filters (BSFs) represent inexpensive, environmentally friendly, and sustainable wastewater treatment systems which rely vastly on microbial catabolic processes. Using denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, this study aimed to assess the impact of increasing concentrations of synthetic phenolic-rich wastewater, ranging from 96 mg L(-1) gallic acid and 138 mg L(-1) vanillin (i.e., a total chemical oxygen demand (COD) of 234 mg L(-1)) to 2,400 mg L(-1) gallic acid and 3,442 mg L(-1) vanillin (5,842 mg COD L(-1)), on bacterial communities and the specific functional diazotrophic community from BSF mesocosms. This amendment procedure instigated efficient BSF phenolic removal, significant modifications of the bacterial communities, and notably led to the selection of a phenolic-resistant and less diverse diazotrophic community. This suggests that bioavailable N is crucial in the functioning of biological treatment processes involving microbial communities, and thus that functional alterations in the bacterial communities in BSFs ensure provision of sufficient bioavailable nitrogen for the degradation of wastewater with a high C/N ratio.
Collapse
Affiliation(s)
- Jean-Baptiste Ramond
- Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
| | | | | | | | | |
Collapse
|