1
|
Gutiérrez-Quirós JA, Coronado-Marchena A, Villegas-Solano D, Rodríguez-Saravia S, Castro-Gutiérrez V, Rodríguez-Rodríguez CE. Improved productivity and dye removal performance of Trametes versicolor pellets using rice husk as a co-substrate. J Microbiol Methods 2024; 223:106976. [PMID: 38925440 DOI: 10.1016/j.mimet.2024.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Pellet production represents a critical step for several processes requiring fungal biomass, nevertheless, its optimization is seldom reported. The use of finely ground rice husk as a microcarrier and co-substrate permitted a marked increase (≈ 2.7×) in the productivity of fungal pellet production using Trametes versicolor compared to traditional production methods. The pellets show similar structure and smaller size compared to typical sole-mycelium pellets, as well as comparable laccase activity. The efficiency of the pellets for biodegradation was confirmed by the removal of the crystal violet dye, achieving significantly faster decolorization rates compared to the traditionally produced pellets. The use of these pellets during the continuous treatment of the dye in a stirred tank bioreactor resulted in 97% decolorization operating at a hydraulic residence time of 4.5 d.
Collapse
Affiliation(s)
- Juan Antonio Gutiérrez-Quirós
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José 11501-2060, Costa Rica
| | - Alonso Coronado-Marchena
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José 11501-2060, Costa Rica
| | - Diego Villegas-Solano
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José 11501-2060, Costa Rica
| | - Sebastián Rodríguez-Saravia
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José 11501-2060, Costa Rica
| | - Víctor Castro-Gutiérrez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José 11501-2060, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José 11501-2060, Costa Rica.
| |
Collapse
|
2
|
Alkas TR, Purnomo AS, Ediati R, Ersam T. Adsorption and decolorization study of reactive black 5 by immobilized metal-organic framework of UiO-66 and Gloeophyllum trabeum fungus. RSC Adv 2023; 13:30885-30897. [PMID: 37869392 PMCID: PMC10588372 DOI: 10.1039/d3ra03804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023] Open
Abstract
This study aimed to investigate immobilized metal-organic framework (MOF) UiO-66 and brown-rot fungus Gloeophyllum trabeum (GT) in PVA-SA matrices for adsorption and decolorization of reactive black 5 (RB5). Furthermore, UiO-66/GT@PVA-SA composite was successfully fabricated and obtained by immobilizing UiO-66 and GT mycelia into a mixture of PVA-SA. This composite demonstrated a decolorization ability of 80.12% for RB5 after 7 days. The composite's reusability was assessed for three cycles; at last, it only achieved 21%. This study reported that adsorption of RB5 by the composite followed a pseudo-second-order kinetic model with a correlation coefficient (R2) of 0.9997. The Freundlich model was found to be suitable for the isotherm adsorption. The process was also spontaneous and feasible, as indicated by the negative ΔG value. Subsequently, four metabolite products resulting from decolorization of RB5 by UiO-66/GT@PVA-SA composite were proposed, namely: C24H19N5Na2O13S4 (m/z = 762), C10H13N2O8S2- (m/z = 353), C12H9N4O7S2- (m/z = 384), and C10H13O8S2- (m/z = 325).
Collapse
Affiliation(s)
- Taufiq Rinda Alkas
- Departement of Environment Management, Politeknik Pertanian Negeri Samarinda Samarinda 75131 Indonesia
| | - Adi Setyo Purnomo
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Surabaya 60111 Indonesia
| | - Ratna Ediati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Surabaya 60111 Indonesia
| | - Taslim Ersam
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Surabaya 60111 Indonesia
| |
Collapse
|
3
|
Ben Ayed A, Hadrich B, Sciara G, Lomascolo A, Bertrand E, Faulds CB, Zouari-Mechichi H, Record E, Mechichi T. Optimization of the Decolorization of the Reactive Black 5 by a Laccase-like Active Cell-Free Supernatant from Coriolopsis gallica. Microorganisms 2022; 10:microorganisms10061137. [PMID: 35744655 PMCID: PMC9227205 DOI: 10.3390/microorganisms10061137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The textile industry generates huge volumes of colored wastewater that require multiple treatments to remove persistent toxic and carcinogenic dyes. Here we studied the decolorization of a recalcitrant azo dye, Reactive Black 5, using laccase-like active cell-free supernatant from Coriolopsis gallica. Decolorization was optimized in a 1 mL reaction mixture using the response surface methodology (RSM) to test the influence of five variables, i.e., laccase-like activity, dye concentration, redox mediator (HBT) concentration, pH, and temperature, on dye decolorization. Statistical tests were used to determine regression coefficients and the quality of the models used, as well as significant factors and/or factor interactions. Maximum decolorization was achieved at 120 min (82 ± 0.6%) with the optimized protocol, i.e., laccase-like activity at 0.5 U mL−1, dye at 25 mg L−1, HBT at 4.5 mM, pH at 4.2 and temperature at 55 °C. The model proved significant (ANOVA test with p < 0.001): coefficient of determination (R²) was 89.78%, adjusted coefficient of determination (R²A) was 87.85%, and root mean square error (RMSE) was 10.48%. The reaction conditions yielding maximum decolorization were tested in a larger volume of 500 mL reaction mixture. Under these conditions, the decolorization rate reached 77.6 ± 0.4%, which was in good agreement with the value found on the 1 mL scale. RB5 decolorization was further evaluated using the UV-visible spectra of the treated and untreated dyes.
Collapse
Affiliation(s)
- Amal Ben Ayed
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Ecole Nationale d’Ingénieurs de Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia;
- UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRAE, 13288 Marseille, France; (G.S.); (A.L.); (E.B.); (C.B.F.); (E.R.)
- Correspondence: (A.B.A.); (T.M.)
| | - Bilel Hadrich
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d’Ingénieurs de Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia;
| | - Giuliano Sciara
- UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRAE, 13288 Marseille, France; (G.S.); (A.L.); (E.B.); (C.B.F.); (E.R.)
| | - Anne Lomascolo
- UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRAE, 13288 Marseille, France; (G.S.); (A.L.); (E.B.); (C.B.F.); (E.R.)
| | - Emmanuel Bertrand
- UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRAE, 13288 Marseille, France; (G.S.); (A.L.); (E.B.); (C.B.F.); (E.R.)
| | - Craig B. Faulds
- UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRAE, 13288 Marseille, France; (G.S.); (A.L.); (E.B.); (C.B.F.); (E.R.)
| | - Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Ecole Nationale d’Ingénieurs de Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia;
| | - Eric Record
- UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, INRAE, 13288 Marseille, France; (G.S.); (A.L.); (E.B.); (C.B.F.); (E.R.)
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Ecole Nationale d’Ingénieurs de Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia;
- Correspondence: (A.B.A.); (T.M.)
| |
Collapse
|
4
|
Wu H, Xu X, Qin Y, Jiang Y, Lin Z. Study on treatment of acid red G with bio-carbon compound immobilized white rot fungi. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2945-2963. [PMID: 35638798 DOI: 10.2166/wst.2022.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Corn straw biochar was used as a carrier to immobilize white rot fungi and the removal performance of immobilized pellets for acid red G (ARG) dye was studied. The results showed that the removal rate of ARG could reach 96.17% under the best preparation conditions of immobilized pellets (3% sodium alginate concentration, 0.7% corn straw biochar, 5% white rot fungus mycelium suspension, 4% CaCl2, and 36 h immobilization time). The orthogonal test results showed that the best combination was the immobilized pellets dosage of 200/100 mL, pH of 4.5, rotation speed of 150 r/min, and initial concentration of 20 mg/L dye at 30 °C. The degradation pathway of ARG by immobilized microspheres was studied by ultraviolet-visible spectrometer, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometry. The results showed that ARG was degraded into aniline and 5-(acetamino)-4-hydroxy-3-amino-2,7-naphthalene disulfonic acid. Aniline was further deaminated to form benzene, and benzene was ring opened to form other organic compounds; 5-(acetylamino)-4-hydroxy-3-amino-2,7-naphthalene disulfonic acid was dehydroxylated to form 5-(acetylamino)-3-amino-2,7-naphthalene disulfonic acid. This study shows that the prepared biochar immobilized pellets can be used as an efficient water treatment material to remove ARG dye from wastewater.
Collapse
Affiliation(s)
- Huifang Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, China E-mail:
| | - Xinyu Xu
- College of Urban Construction, Nanjing Tech University, Nanjing, China E-mail:
| | - Yu Qin
- College of Urban Construction, Nanjing Tech University, Nanjing, China E-mail:
| | - Yu Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, China E-mail:
| | - Zhen Lin
- College of Urban Construction, Nanjing Tech University, Nanjing, China E-mail:
| |
Collapse
|
5
|
Wang J, Xie Y, Hou J, Zhou X, Chen J, Yao C, Zhang Y, Li Y. Biodegradation of bisphenol A by alginate immobilized Phanerochaete chrysosporium beads: Continuous cyclic treatment and degradation pathway analysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Andriani A, Yanto DHY. Comparative kinetic study on biodecolorization of synthetic dyes by Bjerkandera adusta SM46 in alginate beads-packed bioreactor system and shaking culture under saline-alkaline stress. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1929193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ade Andriani
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences, Cibinong, Indonesia
| |
Collapse
|
7
|
Daâssi D, Nasraoui-Hajaji A, Bawasir S, Frikha F, Mechichi T. Biodegradation of C20 carbon clusters from Diesel Fuel by Coriolopsis gallica: optimization, metabolic pathway, phytotoxicity. 3 Biotech 2021; 11:214. [PMID: 33928002 PMCID: PMC8044283 DOI: 10.1007/s13205-021-02769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
This study is to test the capacity of the white rot fungus Coriolopsis gallica for the biodegradation of Diesel Fuel hydrocarbons (DHs). Using the experimental face centered central composite design (FCCCD), culture conditions of the Diesel-mended medium were optimized to reach 110.43% of DHs removal rate, and l5267.35 U L-1 of laccase production by C. gallica, simultaneously. The optimal combination of the cultural parameters was: Diesel concentration range of 2.95-3.14%, inoculum size of 3%, incubation time of 15 days, Tween 80 concentration of 0.05%, and the ratio glucose/peptone (G/P) range of 10.15-10.27. Further, the degradation ability of C. gallica for Diesel Fuel was evaluated through mycelial pellets uptake and oxidative action of fungal enzymes in the optimized degrading-medium using gas chromatography-mass spectrometry (GC-MS). Cyclosiloxanes and C20 PAHs detected as the major compound in Diesel Fuel (46%) was completely bio-transformed to simple metabolites including, essentially benzoic acid ester (71%), alcohols (1.52%) epoxy alkane (1.07%), carboxylic acids (1.24%) and quinones (0.33%). Germination rate and root elongation, as a rapid phytotoxicity test demonstrated that toxicity of Diesel's PAHs is minimized by fungal treatment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02769-w.
Collapse
Affiliation(s)
- Dalel Daâssi
- Department of Biology, Faculty of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Afef Nasraoui-Hajaji
- Forest Ecology Laboratory, National Research Institute in Rural Engineering, Water and Forestry, University of Carthage, Tunis, Tunisia
- Research Unit of Nitrogen Nutrition and Metabolism and Stress-Related Proteins, Tunisian Faculty of Sciences, University of Tunis El Manar, 1060 Tunis, Tunisia
| | - Salwa Bawasir
- Department of Biology, Faculty of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Fakher Frikha
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| |
Collapse
|
8
|
Popović N, Pržulj D, Mladenović M, Prodanović O, Ece S, Ilić Đurđić K, Ostafe R, Fischer R, Prodanović R. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. Int J Biol Macromol 2021; 181:1072-1080. [PMID: 33892032 DOI: 10.1016/j.ijbiomac.2021.04.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 01/13/2023]
Abstract
High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.
Collapse
Affiliation(s)
- Nikolina Popović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dunja Pržulj
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Maja Mladenović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Olivera Prodanović
- Institute for Multidisciplinary Studies, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Selin Ece
- PerkinElmer chemagen Technologie GmbH, Arnold-Sommerfeld-Ring 2, 52499 Baesweiler, Germany
| | - Karla Ilić Đurđić
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Raluca Ostafe
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Purdue Institute of Inflammation, Immunology and Infectious Disease, Molecular Evolution, Protein Engineering and Production, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Rainer Fischer
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Departments of Biological Sciences and Chemistry, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Radivoje Prodanović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
9
|
Ahn H, Rehman JU, Kim T, Oh MS, Yoon HY, Kim C, Lee Y, Shin SG, Jeon JR. Fungal mycelia functionalization with halloysite nanotubes for hyphal spreading and sorption behavior regulation: A new bio-ceramic hybrid for enhanced water treatment. WATER RESEARCH 2020; 186:116380. [PMID: 32919139 DOI: 10.1016/j.watres.2020.116380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Filamentous fungi are believed to remove a wide range of environmental xenobiotics due to their characteristically non-specific catabolic metabolisms. Nonetheless, irregular hyphal spreading can lead to clogging problems in treatment facilities and the dependence of pollutant bioavailability on hyphal surface features severely limits their applicability in water treatment. Here, we propose a scalable and facile methodology to structurally modify fungal hyphae, allowing for both the maximization of pollutant sorption and fungal pellet morphology self-regulation. Halloysite-doped mycelium architectures were efficiently constructed by dipping Aspergillus fumigatus pellets in halloysite nanotube-dispersed water. Ultrastructure analyses using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy revealed that the nanotubes were mainly attached to the outer surface of the pellets. Fungal viability and exoenzyme production were hardly affected by the halloysites. Notably, nanotube doping appeared to be extremely robust given that detachments rarely occurred even in high concentrations of organic solvents and salt. It was also demonstrated that the doped halloysites weakened hyphal growth-driven gelation, thus maintaining sphere-like pellet structures. The water treatment potential of the hybrid fungal mycelia was assessed through both cationic toxic organic/inorganic-contaminated water and real dye industry wastewater clean-ups. Aided by the mesoporous halloysite sites on their surface, the removal abilities of the hybrid structures were significantly enhanced. Moreover, inherent low sorption ability of HNT for heavy metals was found to be overcome by the aid of fungal mycelia. Finally, universal feature of the dipping-based doping way was confirmed by using different filamentous fungi. Given that traditional approaches to effectively implement fungus-based water treatment are based mostly on polymer-based immobilization techniques, our proposed approach provides a novel and effective alternative via simple doping of living fungi with environmentally-benign clays such as halloysite nanotubes.
Collapse
Affiliation(s)
- Hyoungjae Ahn
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jalil Ur Rehman
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Taehyen Kim
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Seung Oh
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Young Yoon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changgyo Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Younki Lee
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
10
|
Zhao J, Wu QX, Cheng XD, Su T, Wang XH, Zhang WN, Lu YM, Chen Y. Biodegradation and detoxification of the triphenylmethane dye coomassie brilliant blue by the extracellular enzymes from mycelia of Lactarius deliciosus. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1952-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Routoula E, Patwardhan SV. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:647-664. [PMID: 31913605 DOI: 10.1021/acs.est.9b03737] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Up to 84 000 tons of dye can be lost in water, and 90 million tons of water are attributed annually to dye production and their application, mainly in the textile and leather industry, making the dyestuff industry responsible for up to 20% of the industrial water pollution. The majority of dyes industrially used today are aromatic compounds with complex, reinforced structures, with anthraquinone dyes being the second largest produced in terms of volume. Despite the progress on decolorization and degradation of azo dyes, very little attention has been given to anthraquinone dyes. Anthraquinone dyes pose a serious environmental problem as their reinforced structure makes them difficult to degrade naturally. Existing methods of decolorization might be effective but are neither efficient nor practical due to extended time, space, and cost requirements. Attention should be given to the emerging routes for dye decolorization via the enzymatic action of oxidoreductases, which have already a strong presence in various other bioremediation applications. This review will discusses the presence of anthraquinone dyes in the effluents and ways for their remediation from dyehouse effluents, focusing on enzymatic processes.
Collapse
Affiliation(s)
- Eleni Routoula
- Department of Chemical and Biological Engineering , University of Sheffield Mappin Street , Sheffield , United Kingdom , S1 3JD
| | - Siddharth V Patwardhan
- Department of Chemical and Biological Engineering , University of Sheffield Mappin Street , Sheffield , United Kingdom , S1 3JD
| |
Collapse
|
12
|
Maniyam MN, Ibrahim AL, Cass AEG. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016. ENVIRONMENTAL TECHNOLOGY 2020; 41:71-85. [PMID: 29923786 DOI: 10.1080/09593330.2018.1491634] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In the present study, locally isolated Rhodococcus strains were attempted as biological tools for methyl red removal, a mutagenic azo dye posing threat to the environment if left untreated. Rhodococcus strain UCC 0016 demonstrated superior methyl red-decolourizing activity of 100% after 24 h at static condition in comparison to Rhodococcus strain UCC 0008 which recorded 65% decolourization after 72 h. Optimization of physicochemical parameters at 30°C, pH 7 and supplementing glucose as the carbon source resulted in improved methyl red-decolourizing activity at static condition and reduced the time taken to achieve complete decolourization by 80%. Higher concentration of methyl red (5 g/L) was able to be decolourized completely within 10 h by adopting the technology of immobilization. The encapsulated cells of Rhodococcus strain UCC 0016 demonstrated higher substrate affinity (Km = 0.6995 g/L) and an accelerated rate of disappearance of methyl red (Vmax = 0.3203 g/L/h) compared to the free cells. Furthermore, the gellan gum beads could be reused up to nine batches without substantial loss in the catalytic activity indicating the economic importance of this protocol. Analysis of methyl red degradation products revealed no germination inhibition on Triticum aestivum and Vigna radiata demonstrating complete toxicity removal of the parent dye after biological treatment. The occurrence of new and altered peaks (UV-Vis and FTIR) further supported the notion that the removal of methyl red by Rhodococcus strain UCC 0016 was indeed through biodegradation. Therefore, this strain has a huge potential as a candidate for efficient bioremediation of wastewater containing methyl red.
Collapse
Affiliation(s)
| | - Abdul Latif Ibrahim
- Institute of Bio-IT Selangor, Universiti Selangor, Shah Alam, Selangor Darul Ehsan, Malaysia
| | | |
Collapse
|
13
|
Pérez-Grisales MS, Castrillón-Tobón M, Copete-Pertuz LS, Plácido J, Mora-Martínez AL. Biotransformation of the antibiotic agent cephadroxyl and the synthetic dye Reactive Black 5 by Leptosphaerulina sp. immobilised on Luffa (Luffa cylindrica) sponge. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Maniyam MN, Yaacob NS, Azman HH, Ab Ghaffar NA, Abdullah H. Immobilized cells of Rhodococcus strain UCC 0004 as source of green biocatalyst for decolourization and biodegradation of methyl orange. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
|
16
|
Meena H, Busi S. Biosorption of Dye and Heavy Metal Pollutants by Fungal Biomass: A Sustainable Approach. Fungal Biol 2018. [DOI: 10.1007/978-3-319-77386-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Patel DK, Tipre DR, Dave SR. Enzyme mediated bacterial biotransformation and reduction in toxicity of 1:2 chromium complex AB193 and AB194 dyes. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Modelling of adsorption of textile dyes over multi-walled carbon nanotubes: Equilibrium and kinetic. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2016.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
El Enshasy HA, Hanapi SZ, Abdelgalil SA, Malek RA, Pareek A. Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68957-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Andriani A, Tachibana S. Lignocellulosic materials as solid support agents for Bjerkandera adusta SM46 to enhance polycyclic aromatic hydrocarbon degradation on sea sand and sea water media. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Daâssi D, Zouari-Mechichi H, Belbahri L, Barriuso J, Martínez MJ, Nasri M, Mechichi T. Phylogenetic and metabolic diversity of Tunisian forest wood-degrading fungi: a wealth of novelties and opportunities for biotechnology. 3 Biotech 2016; 6:46. [PMID: 28330115 PMCID: PMC4742418 DOI: 10.1007/s13205-015-0356-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/24/2015] [Indexed: 12/07/2022] Open
Abstract
In this study, 51 fungal strains were isolated from decaying wood samples collected from forests located in the Northwest of Tunisia in the vicinity of Bousalem, Ain Draham and Kef. Phylogenetic analysis based on the sequences of the internal transcribed spacers of the ribosomal DNA showed a high diversity among the 51 fungal isolates collection. Representatives of 25 genera and 29 species were identified, most of which were members of one of the following phyla (Ascomycota, Basidiomycota and Zygomycota). In addition to the phylogenetic diversity, a high diversity of secreted enzyme profiles was also detected among the fungal isolates. All fungal strains produced at least one of the following enzymes: laccase, cellulase, protease and/or lipase.
Collapse
Affiliation(s)
- Dalel Daâssi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia.
- Department of Biology, Faculty of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia.
| | - Héla Zouari-Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, Rue Emile Argand 11, 2009, Neuchâtel, Switzerland
- NextBiotech, Agareb, Tunisia
| | - Jorge Barriuso
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Route de Soukra Km 4,5, BP 1173, 3038, Sfax, Tunisia.
| |
Collapse
|
22
|
Li X, Xu J, de Toledo RA, Shim H. Enhanced removal of naproxen and carbamazepine from wastewater using a novel countercurrent seepage bioreactor immobilized with Phanerochaete chrysosporium under non-sterile conditions. BIORESOURCE TECHNOLOGY 2015; 197:465-474. [PMID: 26356119 DOI: 10.1016/j.biortech.2015.08.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
A countercurrent seepage bioreactor immobilized with Phanerochaete chrysosporium was continuously operated under non-sterile conditions to treat a synthetic wastewater spiked with naproxen and carbamazepine (1000μg/L each) for 165days. There were no serious bacterial contaminations occurred during the operational period. Naproxen was always removed to the undetectable level regardless of the experimental conditions, while the average removal efficiency for carbamazepine, a well-known recalcitrant pharmaceutically active compound, reached around 80%. The excellent removal performance was mainly attributed to the application of countercurrent seepage mode and the cardhouse fabric of the carriers, which provided the high efficiency in the transfer of oxygen and nutrients inside the bioreactor. From the fungal immobilization combined with the temperature adjustment, the fungal activity including the enzyme production was protected as well as the bacterial contamination inside the reactor was suppressed effectively.
Collapse
Affiliation(s)
- Xueqing Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Jiaming Xu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Renata Alves de Toledo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
23
|
Wen Y, Liang Y, Shen C, Wang H, Fu D, Wang H. Synergistic removal of dyes by Myrothecium verrucaria immobilization on a chitosan–Fe membrane. RSC Adv 2015. [DOI: 10.1039/c5ra11320b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A kind of novel, environmental friendly and efficient hybrid for the fungus and chitosan–Fe membrane has been fabricated by the alginate approach for efficient removal of aqueous dyes.
Collapse
Affiliation(s)
- Yuezhong Wen
- Institute of Environmental Science
- Zhejiang University
- Hangzhou 310058
- China
| | - Ying Liang
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310032
- China
| | - Chensi Shen
- College of Environmental Science and Engineering
- Donghua University
- Shanghai 201620
- China
| | - Hongkai Wang
- Institute of Biology
- Zhejiang University
- Hangzhou 310058
- China
| | - Dongmei Fu
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Hongyu Wang
- College of Civil Engineering and Architecture
- Zhejiang University of Technology
- Hangzhou 310032
- China
| |
Collapse
|
24
|
Tan L, Li H, Ning S, Hao J. Aerobic Decolorization and Degradation of Acid Orange G (AOG) by Suspended Growing Cells and Immobilized Cells of a Yeast Strain Candida tropicalis TL-F1. Appl Biochem Biotechnol 2014; 174:1651-1667. [DOI: 10.1007/s12010-014-1086-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/22/2014] [Indexed: 01/06/2023]
|
25
|
Tan L, Li H, Ning S, Xu B. Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1. BIORESOURCE TECHNOLOGY 2014; 158:321-8. [PMID: 24632410 DOI: 10.1016/j.biortech.2014.02.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 05/17/2023]
Abstract
Aerobic decolorization and degradation of azo dyes by both of suspended growing cells and immobilized cells of a newly isolated yeast strain LH-F1 were investigated in this study. A yeast strain LH-F1 capable of aerobically decolorizing various azo dyes (20mg/L) was identified as Magnusiomyces ingens basing on 26S rDNA analysis. Meanwhile, effects of different parameters on decolorization of Acid Red B by both of suspended growing cells and immobilized cells of strain LH-F1 were investigated. Furthermore, possible degradation pathway of the dye was proposed through analyzing metabolic intermediates using UV-Vis and HPLC-MS methods. As far as it is known, it is the first systematic research on a M. ingens strain which is capable of efficiently decolorizing azo dyes under aerobic condition. Additionally, this work would also provide a potentially useful microbial strain LH-F1 for treatment of industrial wastewaters containing azo dyes.
Collapse
Affiliation(s)
- Liang Tan
- School of Life Science, Liaoning Normal University, Dalian 116081, China.
| | - Hua Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Shuxiang Ning
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Bingwen Xu
- Laboratory of Aquatic Products Quality and Safety Inspection, Dalian City Fisherles Technical Extension Station, Dalian 116024, China
| |
Collapse
|