1
|
de Moraes R, Plepis AMDG, Martins VDCA, Garcia CF, Galdeano EA, Maia FLM, Machado EG, Munhoz MDAES, Buchaim DV, Fernandes VAR, Beraldo RA, Buchaim RL, da Cunha MR. Viability of Collagen Matrix Grafts Associated with Nanohydroxyapatite and Elastin in Bone Repair in the Experimental Condition of Ovariectomy. Int J Mol Sci 2023; 24:15727. [PMID: 37958710 PMCID: PMC10649653 DOI: 10.3390/ijms242115727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Bone lesions have the capacity for regeneration under normal conditions of the bone metabolism process. However, due to the increasing incidence of major traumas and diseases that cause bone-mineral deficiency, such as osteoporosis, scaffolds are needed that can assist in the bone regeneration process. Currently, natural polymeric scaffolds and bioactive nanoparticles stand out. Therefore, the objective of the study was to evaluate the osteoregenerative potential in tibiae of healthy and ovariectomized rats using mineralized collagen and nanohydroxyapatite (nHA) scaffolds associated with elastin. The in-vivo experimental study was performed with 60 20-week-old Wistar rats, distributed into non-ovariectomized (NO) and ovariectomized (O) groups, as follows: Controls (G1-NO-C and G4-O-C); Collagen with nHA scaffold (G2-NO-MSH and G5-O-MSH); and Collagen with nHA and elastin scaffold (G3-NO-MSHC and G6-O-MSHC). The animals were euthanized 6 weeks after surgery and the samples were analyzed by macroscopy, radiology, and histomorphometry. ANOVA and Tukey tests were performed with a 95% CI and a significance index of p < 0.05. In the histological analyses, it was possible to observe new bone formed with an organized and compact morphology that was rich in osteocytes and with maturity characteristics. This is compatible with osteoconductivity in both matrices (MSH and MSHC) in rats with normal conditions of bone metabolism and with gonadal deficiency. Furthermore, they demonstrated superior osteogenic potential when compared to control groups. There was no significant difference in the rate of new bone formation between the scaffolds. Ovariectomy did not exacerbate the immune response but negatively influenced the bone-defect repair process.
Collapse
Affiliation(s)
- Renato de Moraes
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
| | - Ana Maria de Guzzi Plepis
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos 13566-590, Brazil;
| | | | - Claudio Fernandes Garcia
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
| | - Ewerton Alexandre Galdeano
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | | | - Eduardo Gomes Machado
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Marcelo de Azevedo e Souza Munhoz
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Daniela Vieira Buchaim
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil;
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | - Victor Augusto Ramos Fernandes
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Rodrigo Alves Beraldo
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Marcelo Rodrigues da Cunha
- Interunit Postgraduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil; (R.d.M.); (A.M.d.G.P.); (C.F.G.); (M.R.d.C.)
- Department of Morphology and Pathology, Medical College of Jundiai, Jundiaí 13202-550, Brazil; (E.A.G.); (E.G.M.); (M.d.A.e.S.M.); (V.A.R.F.); (R.A.B.)
| |
Collapse
|
2
|
Chang J, Fang W, Chen L, Zhang P, Zhang G, Zhang H, Liang J, Wang Q, Ma W. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. CHEMOSPHERE 2022; 307:136006. [PMID: 35973488 DOI: 10.1016/j.chemosphere.2022.136006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Atrazine has become one of the most popular applied triazine herbicides in the world due to its high herbicidal efficiency and low price. With its large-dosage and long-term use on a global scale, atrazine can cause widespread and persistent contamination of soil and sediment. This review systematically evaluates the toxicological effects, environmental risks, environmental behaviors (adsorption, transport and transformation, and bioaccumulation) of atrazine, and the remediation technologies of atrazine-contaminated soil and sediment. For the adsorption behavior of atrazine on soil and sediment, the organic matter content plays an extremely important role in the adsorption process. Various models and equations such as the multi-media fugacity model and solute transport model are used to analyze the migration and transformation process of atrazine in soil and sediment. It is worth noting that certain transformation products of atrazine in the environment even have stronger toxicity and mobility than its parent. Among various remediation technologies, the combination of microbial remediation and phytoremediation for atrazine-contaminated soil and sediment has wide application prospects. Although other remediation technologies such as advanced oxidation processes (AOPs) can also efficiently remove atrazine from soil, some potential problems still need to be further clarified. Finally, some related challenges and prospects are proposed.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
3
|
A review of cryogels synthesis, characterization and applications on the removal of heavy metals from aqueous solutions. Adv Colloid Interface Sci 2020; 276:102088. [PMID: 31887574 DOI: 10.1016/j.cis.2019.102088] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/27/2023]
Abstract
The physical and chemical attributes of cryogels, such as the macroporosity, elasticity, water permeability and ease of chemical modification have attracted strong research interest in a variety of areas, such as water purification, catalysis, regenerative medicine, biotechnology, bioremediation and biosensors. Cryogels have shown high removal efficiency and selectivity for heavy metals, nutrients, and toxic dyes from aqueous solutions but there are challenges when scaling up from lab to commercial scale applications. This paper represents an overview of the most recent advances in the use of cryogels for the removal of heavy metals from water and attempts to fill the gap in the literature by deepening the understanding on the mechanisms involved, which strongly depend on the initial monomer composition and post-modification agent precursors used in synthesis. The review also describes the advantages of cryogels over other adsorbents and covers synthesis and characterization methods such as SEM/EDS, TEM, FTIR, zeta potential measurements, porosimetry, swelling and mechanical properties.
Collapse
|
4
|
Otero-González L, Mikhalovsky SV, Václavíková M, Trenikhin MV, Cundy AB, Savina IN. Novel nanostructured iron oxide cryogels for arsenic (As(III)) removal. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120996. [PMID: 31445473 DOI: 10.1016/j.jhazmat.2019.120996] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Novel macroporous iron oxide nanocomposite cryogels were synthesized and assessed as arsenite (As(III)) adsorbents. The two-step synthesis method, by which a porous nanonetwork of iron oxide is firstly formed, allowed a homogeneous dispersion of the iron oxide in the cryogel reaction mixture, regardless of the nature of the co-polymer forming the cryogel structure. The cryogels showed excellent mechanical properties, especially the acrylamide-based cryogel. This gel showed the highest As(III) adsorption capacity, with the maximum value estimated at 118 mg/g using the Langmuir model. The immobilization of the nanostructured iron oxide gel into the cryogel matrix resulted in slower adsorption kinetics, however the cryogels offer the advantage of a stable three-dimensional structure that impedes the release of the iron oxide nanoparticles into the treated effluent. A preliminary toxicity evaluation of the cryogels did not indicate any apparent inhibition of human hepatic cells activity, which together with their mechanical stability and high adsorption capacity for As(III) make them excellent materials for the development of nanoparticle based adsorption devices for drinking water treatment.
Collapse
Affiliation(s)
- Lila Otero-González
- School of Environment & Technology, University of Brighton, Brighton BN2 4GJ, UK
| | - Sergey V Mikhalovsky
- ANAMAD Ltd, Sussex Innovation Centre Science Park Square, Falmer, Brighton BN1 9SB, UK; Chuiko Institute of Surface Chemistry, 17, General Naumov street, Kyiv, 03164, Ukraine
| | | | - Mikhail V Trenikhin
- Center of New Chemical Technologies of the Federal Research Center Boreskov, Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, Omsk 644040, Russia
| | - Andrew B Cundy
- School of Environment & Technology, University of Brighton, Brighton BN2 4GJ, UK
| | - Irina N Savina
- School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
5
|
Melia PM, Busquets R, Ray S, Cundy AB. Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water. RSC Adv 2018; 8:40378-40386. [PMID: 35558207 PMCID: PMC9091462 DOI: 10.1039/c8ra07877g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Agricultural production results in wastes that can be re-used to improve the quality of the environment. This work has investigated for the first time the use of abundant, un-modified agricultural wastes and by-products (AWBs) from grape, wheat, barley and flax production, to reduce the concentration of Cd, a highly toxic and mobile heavy metal, in contaminated water. At concentrations of 1.1 mg Cd per L, flax and grape waste were found superior in removing Cd compared with a granular activated carbon used in water treatment, which is both more expensive and entails greater CO2 emissions in its production. At a pH representative of mine effluents, where Cd presents its greatest mobility and risk as a pollutant, grape and flax waste showed capacity for effective bulk water treatment due to rapid removal kinetics and moderate adsorption properties: reaching equilibrium within 183 and 8 min - adsorption capacities were determined as 3.99 and 3.36 mg Cd per g, respectively. The capacity to clean contaminated effluents was not correlated with the surface area of the biosorbents. Surface chemistry analysis indicated that Cd removal is associated with exchange with Ca, and chemisorption involving CdCO3, CdS and CdO groups. This work indicates that some AWBs can be directly (i.e. without pre-treatment or modification) used in bulk to remediate effluents contaminated with heavy metals, without requiring further cost or energy input, making them potentially suitable for low-cost treatment of persistent (e.g. via mine drainage) or acute (e.g. spillages) discharges in rural and other areas.
Collapse
Affiliation(s)
- Patrick M Melia
- Kingston University, Faculty of Science, Engineering and Computing Kingston Upon Thames KT1 2EE UK
- Surface Analysis Laboratory, University of Brighton, Faculty of Science and Engineering BN2 4GJ UK
| | - Rosa Busquets
- Kingston University, Faculty of Science, Engineering and Computing Kingston Upon Thames KT1 2EE UK
| | - Santanu Ray
- Surface Analysis Laboratory, University of Brighton, Faculty of Science and Engineering BN2 4GJ UK
| | - Andrew B Cundy
- Surface Analysis Laboratory, University of Brighton, Faculty of Science and Engineering BN2 4GJ UK
- University of Southampton, School of Ocean and Earth Science Southampton SO14 3ZH UK
| |
Collapse
|
6
|
A Akveran G, Köse K, Köse DA. Solvent effect on endosulfan adsorption onto polymeric arginine-methacrylate cryogels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25458-25467. [PMID: 29951763 DOI: 10.1007/s11356-018-2531-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Endosulfan is a persistent insecticide that is still used in some countries even though it is life-threatening and banned in the agricultural struggle. The solubility of pesticides in water is negligible. It is known that pesticides with better solubility in organic solvents have different solubility when the dielectric constants of these solvents are taken into account. The polymeric structure of arginine was modified with methacrylate to be a functional monomer, and it was immobilized on a solid support, poly(HEMA), and finally, poly(2-hydroxyethyl methacrylate-arginine methacrylate) was obtained and used as an effective adsorbent. The effect of organic solvents on endosulfan adsorption was investigated for the first time in the literature. Endosulfan was removed from alcohol media by using this polymeric structure synthesized by exploiting alcoho-phobic interaction in this work. Nuclear magnetic resonance (NMR), elemental analysis, and Fourier transform infrared spectroscopy (FTIR) methods were used for the structural characterization and therefore to prove successful synthesis of cryogels. Morphological characteristics were also investigated by scanning electron microscopy (SEM), an N2 adsorption method, and swelling test. Adsorption experiments were carried out against varying interaction time and concentration parameters in the batch system. Since the alcohol used as a solvent has a pH value close to the ionic strength of drinking water, no change was made in the pH of the solution. Endosulfan molecules dissolved in solvents such as toluene, dichloromethane, acetone, and chloroform were removed using poly(HEMA-ArMA) cryogels to determine the solvent effect on the adsorption of endosulfan. As expected, the removal of endosulfan from the solvent toluene provided the best result. Although the adsorption in toluene is almost 9.5 times higher than that in ethanol, the use of toluene in the adsorption process due to its chemical structure is not feasible. Thus, experiments were carried out in ethanol.
Collapse
Affiliation(s)
- Gönül A Akveran
- Alaca Avni Çelik Vocational School, Department of Food Processing, Hitit University, Çorum, Turkey
| | - Kazım Köse
- Alaca Avni Çelik Vocational School, Department of Food Processing, Hitit University, Çorum, Turkey.
| | - Dursun A Köse
- Faculty of Science and Literature, Department of Chemistry, Hitit University, Çorum, Turkey
| |
Collapse
|
7
|
Al-Hussain SA, Ezzat AO, Gaffer AK, Atta AM. Removal of organic water pollutant using magnetite nanomaterials embedded with ionic copolymers of 2-acrylamido-2-methylpropane sodium sulfonate cryogels. POLYM INT 2017. [DOI: 10.1002/pi.5492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sami A Al-Hussain
- Department of Chemistry, Faculty of Science; Al Imam Mohammad Ibn Saud Islamic University; Riyadh Saudi Arabia
| | - Abdelrhman O Ezzat
- Department of Chemistry, Faculty of Science; Al Imam Mohammad Ibn Saud Islamic University; Riyadh Saudi Arabia
| | - Amany K Gaffer
- Petroleum Application Department; Egyptian Petroleum Research Institute; Nasr City, Cairo Egypt
| | - Ayman M Atta
- Petroleum Application Department; Egyptian Petroleum Research Institute; Nasr City, Cairo Egypt
- Chemistry Department, College of Science; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|