1
|
Rachna, Singh MP, Goswami S, Singh UK. Pesticide pollution: toxicity, sources and advanced remediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64385-64418. [PMID: 39541023 DOI: 10.1007/s11356-024-35502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The Food and Agricultural Organization of the United Nations (FAO) estimates that food production must rise by 70% to meet the demands of an additional 2.3 billion people by 2050. This forecast underscores the persistent reliance on pesticides, making it essential to assess their toxicity and develop effective remediation strategies. Given the widespread utilisation of pesticides, it requires an urgent need to evaluate their toxicity and explore feasible remediation approaches for their removal. Hence, this review provides an overview of the latest information on the presence, distribution, sources, fate, and trends of pesticides in global environmental matrices, emphasizing the ecological and health risks posed by pesticide pollution. Currently, the dominant remediation techniques encompass physical, chemical, and biological methods, yet studies focusing on advanced remediation techniques remain limited. This review critically evaluates both newer and traditional approaches to pesticide removal, offering a descriptive and analytical comparison of various methods. The selection of the appropriate treatment method depends largely on the nature of the pesticide and the effectiveness of the chosen technique. In many cases, technologies such as membrane bioreactors and the fenton process could be integrated with biological technologies to enhance performance and overcome limitations. The study concludes that a hybrid approach combining various remediation strategies offers the most effective and sustainable solution for pesticide removal. Finally, the review underscores the need for further scientific investigation into the most viable technologies while discussing the challenges and prospects of developing safe, reliable, cost-effective, and eco-friendly methods for removing pesticides from the environment.
Collapse
Affiliation(s)
- Rachna
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India
| | - Shreerup Goswami
- Department of Geology, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Umesh Kumar Singh
- Department of Environmental Science, Central University of South Bihar, Gaya, Bihar, India.
- Centre of Environmental Studies, University of Allahabad, Prayagraj, 211002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Sundararaman S, Kumar KS, Siddharth U, Prabu D, Karthikeyan M, Rajasimman M, Thamarai P, Saravanan A, Kumar JA, Vasseghian Y. Sustainable approach for the expulsion of metaldehyde: risk, interactions, and mitigation: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:248. [PMID: 38874631 DOI: 10.1007/s10653-024-02001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
All pests can be eliminated with the help of pesticides, which can be either natural or synthetic. Because of the excessive use of pesticides, it is harmful to both ecology and people's health. Pesticides are categorised according to several criteria: their chemical composition, method of action, effects, timing of use, source of manufacture, and formulations. Many aquatic animals, birds, and critters live in danger owing to hazardous pesticides. Metaldehyde is available in various forms and causes significant impact even when small amounts are ingested. Metaldehyde can harm wildlife, including dogs, cats, and birds. This review discusses pesticides, their types and potential environmental issues, and metaldehyde's long-term effects. In addition, it examines ways to eliminate metaldehyde from the aquatic ecosystem before concluding by anticipating how pesticides may affect society. The metal-organic framework and other biosorbents have been appropriately synthesized and subsequently represent the amazing removal of pesticides from effluent as an enhanced adsorbent, such as magnetic nano adsorbents. A revision of the risk assessment for metaldehyde residuals in aqueous sources is also attempted.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - K Satish Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - U Siddharth
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Karthikeyan
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, Chidambaram, 608002, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, Tamilnadu, 602105, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Saveetha University, Chennai, India
| | - Yasser Vasseghian
- Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Ahmad S, Chandrasekaran M, Ahmad HW. Investigation of the Persistence, Toxicological Effects, and Ecological Issues of S-Triazine Herbicides and Their Biodegradation Using Emerging Technologies: A Review. Microorganisms 2023; 11:2558. [PMID: 37894216 PMCID: PMC10609637 DOI: 10.3390/microorganisms11102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
S-triazines are a group of herbicides that are extensively applied to control broadleaf weeds and grasses in agricultural production. They are mainly taken up through plant roots and are transformed by xylem tissues throughout the plant system. They are highly persistent and have a long half-life in the environment. Due to imprudent use, their toxic residues have enormously increased in the last few years and are frequently detected in food commodities, which causes chronic diseases in humans and mammals. However, for the safety of the environment and the diversity of living organisms, the removal of s-triazine herbicides has received widespread attention. In this review, the degradation of s-triazine herbicides and their intermediates by indigenous microbial species, genes, enzymes, plants, and nanoparticles are systematically investigated. The hydrolytic degradation of substituents on the s-triazine ring is catalyzed by enzymes from the amidohydrolase superfamily and yields cyanuric acid as an intermediate. Cyanuric acid is further metabolized into ammonia and carbon dioxide. Microbial-free cells efficiently degrade s-triazine herbicides in laboratory as well as field trials. Additionally, the combinatorial approach of nanomaterials with indigenous microbes has vast potential and considered sustainable for removing toxic residues in the agroecosystem. Due to their smaller size and unique properties, they are equally distributed in sediments, soil, water bodies, and even small crevices. Finally, this paper highlights the implementation of bioinformatics and molecular tools, which provide a myriad of new methods to monitor the biodegradation of s-triazine herbicides and help to identify the diverse number of microbial communities that actively participate in the biodegradation process.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Environmental Sustainability & Health Institute (ESHI), City Campus, School of Food Science & Environmental Health, Technological University Dublin, Grangegorman Lower, D07 EWV4 Dublin, Ireland
- Key Laboratory of Integrated Pest Management of Crop in South China, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture and Rural Affairs, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Seoul 05006, Republic of Korea;
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering & Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
4
|
Talukdar P, Bordoloi P, Bora PP, Yadav A, Saikia R, Geed SR. Assessment of oily sludge biodegradation in lab scale composting and slurry bioreactor by bacterial consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118360. [PMID: 37315467 DOI: 10.1016/j.jenvman.2023.118360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
The present study aimed to investigate biodegradability of oily sludge in lab scale composting and slurry bioreactor using a potential bacterial consortium isolated from petroleum-contaminated sites. The consortium used in the study consisted of bacterial genera, including Enterobacter, Bacillus, Microbacterium, Alcaligenes Pseudomonas, Ochrobactrum, Micrococcus, and Shinella which were obtained after rigorous screening using different hydrocarbons. The meticulously designed lab scale composting experiments were carried out and showed that the combination of 10% oily sludge (A1) exhibited the highest total carbon (TC) removal, which was 40.33% within 90 days. To assess the composting experiments' efficiency, the first (k1) and second (k2) order rate constants were evaluated and was found to be 0.0004-0.0067 per day and second (k2) 0.0000008-0.00005 g/kg. day respectively. To further enhance the biodegradation rate of A1 combination, a slurry bioreactor was used. The maximum total petroleum hydrocarbon (TPH) removals in a slurry bioreactor for cycle-I and -II were 48.8% and 46.5%, respectively, on the 78th and 140th days of the treatment. The results obtained in the study will be a technological platform for the development of slurry phase treatment of petroleum waste in a sustainable and eco-friendly manner.
Collapse
Affiliation(s)
- Pooja Talukdar
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palakshi Bordoloi
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Priyankush Protim Bora
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Archana Yadav
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Ratul Saikia
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sachin Rameshrao Geed
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Reyes-Cervantes A, Robles-Morales DL, Téllez-Jurado A, Huerta-Ochoa S, Jiménez-González A, Medina-Moreno SA. Evaluation in the performance of the biodegradation of herbicide diuron to high concentrations by Lysinibacillus fusiformis acclimatized by sequential batch culture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112688. [PMID: 33965706 DOI: 10.1016/j.jenvman.2021.112688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
We evaluated and characterized the biodegradation of the herbicide diuron in its commercial form above its saturation concentration by Lysinibacillus fusiformis acclimatized by sequential batch culturing. Acclimatization was carried out in eight cycles in liquid culture, improving the capacity of L. fusiformis to remove diuron from 55.13 ± 1.3% in the first batch to 87.2 ± 0.11% in the eighth batch. Diuron biosorption was characterized with Langmuir and Freundlich isotherms, obtaining a maximum biosorption (qmax) of 0.00885 mg mg-1. In diuron biodegradation assays, a consumption substrate biomass yield (YSD/X) of 6.266 mg mg-1 was obtained, showing that biodegradation was the main mechanism in diuron removal. Diuron biodegradation by L. fusiformis was characterized by the Monod model, with a maximum specific growth rate (μmax) of 0.0245 h-1 and an affinity constant (KSD) of 344.09 mg L-1. A low accumulation of 3,4-dichloroaniline with the production of chloride ions indicated dechlorination when diuron was present at high concentrations. A phytotoxic assay conducted with Lactuca sativa showed that the toxicity of an effluent with diuron at 250 mg L-1 decreased when it was pretreated with acclimatized L. fusiformis. Acclimatization by sequential batch culturing improved the ability of L. fusiformis to biodegrade diuron at high concentrations, showing potential in the bioremediation of diuron-contaminated sites.
Collapse
Affiliation(s)
- Alejandro Reyes-Cervantes
- Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Ex-Hacienda de Santa Bárbara, Municipio. Zempoala, Hgo., C.P, 43830, Carretera Pachuca Cd. Sahagún Km. 20, Mexico.
| | - Diana Laura Robles-Morales
- Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Ex-Hacienda de Santa Bárbara, Municipio. Zempoala, Hgo., C.P, 43830, Carretera Pachuca Cd. Sahagún Km. 20, Mexico.
| | - Alejandro Téllez-Jurado
- Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Ex-Hacienda de Santa Bárbara, Municipio. Zempoala, Hgo., C.P, 43830, Carretera Pachuca Cd. Sahagún Km. 20, Mexico.
| | - Sergio Huerta-Ochoa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Leyes de Reforma 1ra Secc, Iztapalapa, 09340, Ciudad de México, Mexico.
| | - Angélica Jiménez-González
- Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Ex-Hacienda de Santa Bárbara, Municipio. Zempoala, Hgo., C.P, 43830, Carretera Pachuca Cd. Sahagún Km. 20, Mexico.
| | - Sergio Alejandro Medina-Moreno
- Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Ex-Hacienda de Santa Bárbara, Municipio. Zempoala, Hgo., C.P, 43830, Carretera Pachuca Cd. Sahagún Km. 20, Mexico.
| |
Collapse
|
6
|
Chaturvedi A, Rai BN, Singh RS, Jaiswal RP. A comprehensive review on the integration of advanced oxidation processes with biodegradation for the treatment of textile wastewater containing azo dyes. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The threat of dye contamination has achieved an unsurpassed abnormal state lately due to their massive consumption in several enterprises including textile, leather, cosmetic, plastic, and paper industries. This review focuses on the integrations of various advanced oxidation processes (AOPs), such as Fenton, photocatalysis, and ozonation, with biodegradation for the treatment of textile azo dyes. Such integrations have been explored lately by researchers to bring down the processing cost and improve the degree of mineralization of the treated dyeing wastewater. The review refers to the basic mechanisms, the influence of various process parameters, outcomes of recent works, and future research directions. All the three AOPs, independently, demonstrated substantial color reduction of 54–100%. The ozonation process, stand-alone, showed the most efficient decolorization (of 88–100%) consistently in all reviewed research works. In contrast, all three AOPs independently offered varied and inadequate COD reduction in the range of 16–80%. The AOPs, after getting integrated with biodegradation, yielded an additional reduction (of 11–70%) in the COD-levels and (of 16–80%) in the TOC-levels. Further, the integration of AOPs with biodegradation has potential to significantly reduce the treatment costs. The review suggests further research efforts in the direction of sequencing chemical and biological routes such that their synergistic utilization yield complete detoxification of the textile azo dyes economically at large-scale.
Collapse
Affiliation(s)
- Anuj Chaturvedi
- Department of Chemical Engineering and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh 221005 , India
| | - Birendra Nath Rai
- Department of Chemical Engineering and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh 221005 , India
| | - Ram Saran Singh
- Department of Chemical Engineering and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh 221005 , India
| | - Ravi Prakash Jaiswal
- Department of Chemical Engineering and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
7
|
Santillan JY, Rojas NL, Ghiringhelli PD, Nóbile ML, Lewkowicz ES, Iribarren AM. Organophosphorus compounds biodegradation by novel bacterial isolates and their potential application in bioremediation of contaminated water. BIORESOURCE TECHNOLOGY 2020; 317:124003. [PMID: 32810733 DOI: 10.1016/j.biortech.2020.124003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus compounds (OPs), the major pesticides used worldwide, comprise an environmental hazard due to their harmful toxicity. Aimed to develop a bioreactor to remediate OPs contaminated wastewater, bacteria isolated from contaminated soils were identified and their ability to degrade OPs assessed, resulting in two main isolates, Sphingomonas sp. and Brevundimonas sp. Their OP degrading activities were characterized in terms of temperature, pH and substrates acceptance, resulting in high degradation rates at 60 °C, pH 10 and towards bulky OPs such as coroxon, coumaphos, and chlorpyrifos. Sphingomonas sp. cells were immobilized and 75.4% degradation of 0.15 mM chlorpyrifos was achieved after 21 days by immobilized cells in batch system, while this OP was completely degraded within 17 h when the biocatalyst is settled in a packed bed bioreactor, with a reusability of 8 cycles. These results suggest the potential application of this system in the bioremediation of contaminated wastewater.
Collapse
Affiliation(s)
- Julia Yamila Santillan
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Biocatálisis y Biotransformaciones, Roque Sáenz Peña 352, Quilmes 1876, Argentina.
| | - Natalia Lorena Rojas
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular- Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| | - Pablo Daniel Ghiringhelli
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular- Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| | - Matías Leonardo Nóbile
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Biocatálisis y Biotransformaciones, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| | - Elizabeth Sandra Lewkowicz
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Biocatálisis y Biotransformaciones, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| | - Adolfo Marcelo Iribarren
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Laboratorio de Biocatálisis y Biotransformaciones, Roque Sáenz Peña 352, Quilmes 1876, Argentina
| |
Collapse
|
8
|
Magnoli K, Carranza CS, Aluffi ME, Magnoli CE, Barberis CL. Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38501-38512. [PMID: 32770339 DOI: 10.1007/s11356-020-10370-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
One of the main herbicides used in the agricultural environments is 2,4-dichlorophenoxyacetic acid (2,4-D). It is a synthetic plant hormone auxin employed in many crops including rice, wheat, sorghum, sugar cane, and corn to control wide leaf weeds. The indiscriminate use of pesticides can produce numerous damages to the environment. Therefore, this review has the objective to provide an overview on the main characteristics of the herbicides based on 2,4-D, mostly on the role of microorganisms in its degradation and its main degradation metabolite, 2,4- dichlorophenol (2,4-DCP). The remediation processes carried out by microorganisms are advantageous to avoid the pollution of the environment as well as to safeguard the population health.
Collapse
Affiliation(s)
- Karen Magnoli
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Cecilia Soledad Carranza
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Melisa Eglé Aluffi
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Carina Elizabeth Magnoli
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina
| | - Carla Lorena Barberis
- Instituto de Investigación en Micología y Micotoxicología (IMICO-CONICET). Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico, Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional N° 36 Km 601, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
9
|
Zhang C, Li J, An H, Wu X, Wu Y, Long Y, Li R, Xing D. Enhanced elimination of dimethachlon from soils using a novel strain Brevundimonas naejangsanensis J3. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 255:109848. [PMID: 31756580 DOI: 10.1016/j.jenvman.2019.109848] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Dimethachlon is a hazardous xenobiotic which poses a potential risk on the ecosystem and human health after foliar spray for mitigating fungal diseases of crops. A novel dimethachlon-degrading strain was isolated and identified as Brevundimonas naejangsanensis J3. Free cells and enzymes of this strain could rapidly eliminate 75 mg/L dimethachlon in liquid medium, especially the latter (>90% of degradation efficiency). Strain J3 completely metabolized dimethachlon by an ideally transformed pathway. Immobilization cells and enzymes exhibited better stability and adaptability for the repeated use, as compared with free cells and enzymes. In laboratory, 68.03 and 65.13%, or 82.67 and 95.41% of dimethachlon were eliminated from non-sterile soils by free or immobilized cells and enzymes within 7 d, respectively. Under the field condition, 95.78 and 98.01% of 20.250 kg a.i./ha dimethachlon wettable powder from soils were degraded by immobilized cells and enzymes in 9 d respectively, which were significant higher than the degradation efficiencies of free cells and enzymes (78.81 and 67.25%). This study highlights immobilized cells and enzymes from strain J3 can be applicable for bioremediating dimethachlon-contaminated soils.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Jiaohong Li
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Huaming An
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xiaomao Wu
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Yanyou Wu
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China.
| | - Youhua Long
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Rongyu Li
- Institute of Crop Protection, Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Deke Xing
- College of Agricultural Equipment and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
10
|
Ng A, Weerakoon D, Lim E, Padhye LP. Fate of environmental pollutants. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1294-1325. [PMID: 31502369 DOI: 10.1002/wer.1225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This annual review covers the literature published in 2018 on topics related to the occurrence and fate of environmental pollutants in wastewater. Due to the vast amount of literature published on this topic, we have discussed only a portion of the quality research publications, due to the limitation of space. The abstract search was carried out using Web of Science, and the abstracts were selected based on their relevance. In a few cases, full-text articles were referred to understand new findings better. This review is divided into the following sections: antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs), disinfection by-products (DBPs), drugs of abuse (DoAs), estrogens, heavy metals, microplastics, per- and polyfluoroalkyl compounds (PFAS), pesticides, and pharmaceuticals and personal care products (PPCPs), with the addition of two new classes of pollutants to previous years (DoAs and PFAS).
Collapse
Affiliation(s)
- Archie Ng
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Dilieka Weerakoon
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Erin Lim
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Sonwani RK, Swain G, Giri BS, Singh RS, Rai BN. A novel comparative study of modified carriers in moving bed biofilm reactor for the treatment of wastewater: Process optimization and kinetic study. BIORESOURCE TECHNOLOGY 2019; 281:335-342. [PMID: 30831512 DOI: 10.1016/j.biortech.2019.02.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
In this work, modified plastic carriers; polypropylene (PP), low-density polyethylene- polypropylene (LDPE-PP), and polyurethane foam-polypropylene (PUF-PP) were developed and used in moving bed bioreactor (MBBR) for the wastewater treatment containing naphthalene. To optimized the process parameters using response surface methodology (RSM), two numerical variables; pH (5.0-9.0) and hydraulic retention time (HRT) (1.0-5.0 day) along with the type of carriers (PP, LDPE-PP, and PUF-PP) were selected as a categorical factor. At 7.0 pH and 5 days HRT, maximum removal efficiencies were observed to be 72.4, 84.4, and 90.2% for MBBR packed with PP, LDPE-PP, and PUF-PP carriers, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis reveals catechol and 2-naphthol were observed as intermediate metabolites for naphthalene degradation. Modified Stover-Kincannon model was applied for biodegradation kinetic and constants were observed as Umax: 0.476, 0.666, and 0.769 g/L.day and KB: 0.565, 0.755, and 0.874 g/L.day for PP, LDPE-PP, PUF-PP, respectively.
Collapse
Affiliation(s)
- Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ganesh Swain
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Balendu Shekhar Giri
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Birendra Nath Rai
- Department of Chemical Engineering & Technology Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
12
|
Kureel MK, Geed SR, Rai BN, Singh RS. Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by isolated Bacillus sp. M4 and proteomic study. BIORESOURCE TECHNOLOGY 2018; 266:335-342. [PMID: 29982055 DOI: 10.1016/j.biortech.2018.06.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
The present study reveals the benzene degrading potential of bacterial species isolated from petroleum contaminated soil. Genomic analysis suggests that Bacillus sp. M4 was found to be dominating species. The process parameters were optimized and found to be pH 7.0 ± 0.2, temperature 32 ± 5 °C, immobilization time (20 days) and benzene concentration 400 mg/L. The maximum removal efficiency of benzene was calculated and found to be 93.13% at elimination capacity156 (mg/L/day) and inlet loading rate 192 (mg/L/day) achieved in 54th days of operation. In the study, the residual metabolites were analyzed by GC/MS analysis and identified as benzene-1,2-diol. In order to identify the responsible protein involved in the process of benzene biodegradation The proteomic study was performed and proteins were identified by MALDI-TOF analysis. The molecular docking was confirmed by the benzene biodegradation.
Collapse
Affiliation(s)
- M K Kureel
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India
| | - S R Geed
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India
| | - B N Rai
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India
| | - R S Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| |
Collapse
|