1
|
Amrulloh Y, Syukri, Emriadi, Arief S, Labanni A, Saputra IS, Saputro AH. Feasible synthesis of nickel ferrite using Uncaria gambir Roxb. leaf extract for removal of phosphate from aqueous solution. RESULTS IN SURFACES AND INTERFACES 2025; 18:100404. [DOI: 10.1016/j.rsurfi.2024.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Hong Y, Cheng H, Huangfu X, Li L, He Q. Inhibition of phosphorus removal performance in activated sludge by Fe(III) exposure: transitions in dominant metabolic pathways. Front Microbiol 2024; 15:1424938. [PMID: 38933032 PMCID: PMC11201142 DOI: 10.3389/fmicb.2024.1424938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Simultaneous chemical phosphorus removal process using iron salts (Fe(III)) has been widely utilized in wastewater treatment to meet increasingly stringent discharge standards. However, the inhibitory effect of Fe(III) on the biological phosphorus removal system remains a topic of debate, with its precise mechanism yet to be fully understood. Methods Batch and long-term exposure experiments were conducted in six sequencing batch reactors (SBRs) operating for 155 days. Synthetic wastewater containing various Fe/P ratios (i.e., Fe/P = 1, 1.2, 1.5, 1.8, and 2) was slowly poured into the SBRs during the experimental period to assess the effects of acute and chronic Fe(III) exposure on polyphosphate-accumulating organism (PAO) growth and phosphorus metabolism. Results Experimental results revealed that prolonged Fe(III) exposure induced a transition in the dominant phosphorus removal mechanism within activated sludge, resulting in a diminished availability of phosphorus for bio-metabolism. In Fe(III)-treated groups, intracellular phosphorus storage ranged from 3.11 to 7.67 mg/g VSS, representing only 26.01 to 64.13% of the control. Although the abundance of widely reported PAOs (Candidatus Accumulibacter) was 30.15% in the experimental group, phosphorus release and uptake were strongly inhibited by high dosage of Fe(III). Furthermore, the abundance of functional genes associated with key enzymes in the glycogen metabolism pathway increased while those related to the polyphosphate metabolism pathway decreased under chronic Fe(III) stress. Discussion These findings collectively suggest that the energy generated from polyhydroxyalkanoates oxidation in PAOs primarily facilitated glycogen metabolism rather than promoting phosphorus uptake. Consequently, the dominant metabolic pathway of communities shifted from polyphosphate-accumulating metabolism to glycogen-accumulating metabolism as the major contributor to the decreased biological phosphorus removal performance.
Collapse
Affiliation(s)
| | | | | | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166142. [PMID: 37574061 DOI: 10.1016/j.scitotenv.2023.166142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
4
|
Zhang Y, Qin J, Chen Z, Chen Y, Zheng X, Guo L, Wang X. Efficient removal and recovery of phosphorus from industrial wastewater in the form of vivianite. ENVIRONMENTAL RESEARCH 2023; 228:115848. [PMID: 37024026 DOI: 10.1016/j.envres.2023.115848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
With the shortage of phosphorus resources, the concept of phosphorus recovery from wastewater is generally proposed. Recently, phosphorus recovery from wastewater in the form of vivianite has been widely reported, which could be used as a slow-release fertilizer as well as the production of lithium iron phosphate for Li-ion batteries. In this study, chemical precipitation thermodynamic modeling was applied to evaluate the effect of solution factors on vivianite crystallization with actual phosphorus containing industrial wastewater. The modeling results showed that the solution pH influences the concentration of diverse ions, and the initial Fe2+ concentration affects the formation area of vivianite. The saturation index (SI) of vivianite increased with the initial Fe2+ concentration and Fe:P molar ratio. pH 7.0, initial Fe2+ concentration 500 mg/L and Fe:P molar ratio 1.50 were the optimal conditions for phosphorus recovery. Mineral Liberation Analyzer (MLA) accurately determined the purity of vivianite was 24.13%, indicating the feasibility of recovering vivianite from industrial wastewater. In addition, the cost analysis showed that the cost of recovering phosphorus by the vivianite process was 0.925 USD/kg P, which can produce high-value vivianite products and realize "turn waste into treasure".
Collapse
Affiliation(s)
- Yangzhong Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Jiafu Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou, 510006, China; Hua An Biotech Co., Ltd., Foshan, 528300, China.
| | - Yongxing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Xuwen Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Hua An Biotech Co., Ltd., Foshan, 528300, China.
| | - Lu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Hua An Biotech Co., Ltd., Foshan, 528300, China.
| |
Collapse
|
5
|
Luo J, Peng J, Zhong Z, Long X, Yang J, Li R, Wan J. A novel calcium peroxide/attapulgite-Fe(II) process for high concentration phosphate removal and recovery: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118166. [PMID: 37229855 DOI: 10.1016/j.jenvman.2023.118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Phosphorus (P) has been overused in livestock farming, which inevitably results in high-concentration P-containing wastewater. Managing total phosphorus discharge is important to prevent eutrophication in aquatic environments, thus it is critical to develop new technologies for the removal and recovery of high-concentration phosphate. In this study, a novel calcium peroxide/attapulgite (CP/ATP) composite was developed and coupled with Fe(II) for high-concentration phosphate removal and recovery. The results demonstrated that the optimal dosage of the CP/ATP-Fe(II) process was CP/ATP = 0.25 g/L and Fe(II) = 2 mM. The pH effect on phosphate removal was minimal, while phosphate removal efficiency rose by 16.7% with the temperature increased from 10 °C to 25 °C. The co-existing ions exhibited little effect on phosphate removal, and the CP/ATP-Fe(II) process showed effective phosphate removal from the real piggery wastewater. The P content of the precipitates after phosphate removal by this process was as high as 25.82%, indicating its good potential for P recycling. A significant synergistic effect existed in CP/ATP and Fe(II) for phosphate removal, and the SEM-EDS, XRD, Raman and XPS characterization exhibited that the phosphate removal mainly relied on the in-situ-formed Fe(III) and the participation of calcium (Ca) species. Co-precipitation was the predominant mechanism for phosphate removal, and the proportions of Fe(III)-P, Ca-P and Ca-Fe(III)-P in the precipitates were 51.5%, 31.2% and 17.3%, respectively. This study provides a highly efficient process for phosphate removal and recovery from wastewater, and insights into interactions among phosphorus, iron and calcium.
Collapse
Affiliation(s)
- Jun Luo
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jia Peng
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhenxing Zhong
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Engineering Research Center of Ministry of Education for Clean Production of Textile Dyeing and Printing, Wuhan Textile University, Wuhan 430200, China
| | - Xuejun Long
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Engineering Research Center of Ministry of Education for Clean Production of Textile Dyeing and Printing, Wuhan Textile University, Wuhan 430200, China.
| | - Jiazhi Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Rui Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jun Wan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; Engineering Research Center of Ministry of Education for Clean Production of Textile Dyeing and Printing, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
6
|
Forouzesh M, Fatehifar E, Khoshbouy R, Daryani M. Experimental investigation of iron removal from wet phosphoric acid through chemical precipitation process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Hu Y, Gu W, Hu H, Li X, Zhang Q. Mechanically activated calcium carbonate and zero-valent iron composites for one-step treatment of multiple pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27421-27429. [PMID: 34981379 DOI: 10.1007/s11356-021-17899-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The growing presences of conventional and emerging contaminants make the wastewater treatment increasingly difficult and expensive on a global scale. ZVI tends to be an expectable material for the detoxification of some difficult contaminants such as chlorinated solvents and nitroaromatics. In this work, together use with calcium carbonate (CaCO3), which serves as a green supporter to ZVI and also direct participant toward the purification process, has been carried out by cogrinding to give a synergistic effect, particularly for treating multiple pollutants including both inorganic and organic compositions. Based on a set of analytical methods of XRD, FTIR, SEM, XPS, and other test methods, the activation mechanism of the ball milling process and the removal performances of the prepared composites were examined. The results prove that the mechanically activated calcium carbonate and ZVI composite samples exhibited extremely high removal capacity on a variety of pollutants contaminated water. The decolorization of azo dyes is mainly attributed to the breaking of chromogenic functional group nitrogen and nitrogen double bonds, and the removal mechanism of aromatic series occurs through a hydrogenation substitution reaction. As to the inorganic pollutant removals, besides the efficient heavy metal ion precipitations, phosphate and fluoride ions are co-precipitated through the formation of fluorapatite to achieve a simultaneous and synergistic removal effect. Under the optimal reaction conditions, the concentration of PO43- is reduced from 250 to 0 mg/L, and that of F- is reduced from 51.07 to 1.20 mg/L. The prepared composite sample of ZVI rand calcium carbonate allowed simultaneous removals of both inorganic and organic pollutants, simplifying the remediation process of complicated multiple contaminations.
Collapse
Affiliation(s)
- Yanhui Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China
| | - Weijian Gu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China
| | - Huimin Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China
| | - Xuewei Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi, 341109, China.
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, Hubei, China.
| |
Collapse
|
8
|
Research and Modelling the Ability of Waste from Water and Wastewater Treatment to Remove Phosphates from Water. Processes (Basel) 2022. [DOI: 10.3390/pr10020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research investigated the ability of two materials, which are waste generated during water treatment and wastewater treatment, to remove phosphates from water. The selected materials were quartz sand used in drinking water treatment plants (OQS) and incinerated (600 °C) sewage sludge (ISS). The materials were chosen for their composition: both contain aluminium, iron, and calcium. The experiments were carried out in the laboratory (in batch and in columns stand). Modelling of the sorption processes was performed on the basis of results from experiments in batches. The maximum adsorption capacity of the OQS was 1.14 mg/g obtained using the linearized Langmuir model and the maximum adsorption capacity of the ISS was 0.86 mg/g for the linearized Langmuir model (in batch). A pseudo-first-order model obtained using a nonlinear fit can accurately explain phosphate adsorption kinetics using both adsorbents: OQS and ISS. During the column filtration experiment, a higher sorption capacity of the ISS filter media was achieved −2.1 mg of phosphate phosphorus per gram of filter media. The determined adsorption capacity of the investigated materials was average, but the reuse of this waste would help to solve the issues of the circular economy.
Collapse
|
9
|
Chen M, Li X, Zhang Q, Wang C, Hu H, Wang Q, Zeng C. Phosphate removal from aqueous solution by electrochemical coupling siderite packed column. CHEMOSPHERE 2021; 280:130805. [PMID: 34162095 DOI: 10.1016/j.chemosphere.2021.130805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
The use of iron species to remove PO43- is widely used, and the fresh Fe3+ produced in situ demonstrate better effect on the removal of PO43- in many researches. Therefore, in order to develop a simpler and more efficient method for PO43- removal, we designed an easy operation by electrochemically dissolving siderite to produce fresh Fe3+ in situ for PO43- removal from wastewater. Results showed that current intensity at 20 mA, initial pH at 6, initial PO43- concentration at 1 mM and influent flow rate at 2.5 mL min-1 were the best parameters for removing PO43-, ensuring that the PO43- concentration of effluent can be kept below 1 mg L-1 through the electrochemical system. Different from other studies, a large amount of Fe2+ can be dissolved from natural minerals without adding H+ to the system and Fe3+ species are generated in situ from the oxidation of the Fe2+ without using a specific oxidizer. This electrochemical treatment method with siderite as a packed column can be used as a new method of high efficiency, simple operation and low-cost for treating eutrophic water bodies.
Collapse
Affiliation(s)
- Mengfei Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Xuewei Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences, 341109, Jiangxi, China.
| | - Qiwu Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Chao Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Huimin Hu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Qian Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Chaocheng Zeng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| |
Collapse
|
10
|
Wang Q, Liao Z, Yao D, Yang Z, Wu Y, Tang C. Phosphorus immobilization in water and sediment using iron-based materials: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144246. [PMID: 33434847 DOI: 10.1016/j.scitotenv.2020.144246] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/25/2020] [Accepted: 11/24/2020] [Indexed: 05/28/2023]
Abstract
As an essential element for life, phosphorus (P) is very important for organisms. However, excessive P in water and sediment can cause eutrophication, which poses a potential risk to drinking water safety and the sustainability of aquatic ecosystems. Therefore, effective phosphorus-control in water and sediment is the key strategy to control eutrophication. Iron-based materials exhibit high efficiency for P immobilization due to their strong affinity with P, low cost, easy availability, and environmentally friendliness. They are promising materials for controlling P in application. This work comprehensively summarizes the recent advances on P immobilization in water and sediment by different iron-based materials, including iron (hydr)oxides, iron salts, zero-valent iron and iron-loaded materials. This review is focused on the mechanism of the processes and how they are impacted by major influencing factors. The combination of iron-containing materials with other assisting materials is a good strategy to enhance P-fixation efficiency and selectivity. Finally, the current challenges and prospects of P-control technologies based on iron-containing materials are proposed. This review provides a systemic theoretical and experimental foundation for P-immobilization in water and sediment using iron-based materials.
Collapse
Affiliation(s)
- Qipeng Wang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Zaiyi Liao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; Department of Architectural Science, Ryerson University, Toronto, Canada
| | - Dongxin Yao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Zhengjian Yang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yonghong Wu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China
| | - Cilai Tang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
11
|
Mažeikienė A, Vaiškūnaitė R, Šarko J. Sand from groundwater treatment coated with iron and manganese used for phosphorus removal from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142915. [PMID: 33757254 DOI: 10.1016/j.scitotenv.2020.142915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
This article presents investigations into the removal of PO4-P from biologically treated wastewater using raw material taken from drinking water treatment filters - quartz sand grains coated with iron and manganese oxide coating (OG). The experiments carried out in laboratory stands used real household wastewater and demonstrated that OG filter media accumulated and removed from wastewater two times more PO4-P than known reactive filter media Filtralite P. The mean effectiveness of PO4-P removal from wastewater by filtering at a rate of 2.2 m/h and using OG filter media reached 68%. The pH of the filtrate from OG filter media was stable and reached 7.7 ± 0.2 thus meeting requirements for the discharge of treated wastewater into the natural environment. OG grains are mechanically resistant, do not pollute the filtrate and could therefore be used as filter media for tertiary wastewater treatment.
Collapse
Affiliation(s)
- A Mažeikienė
- Department of Environmental Protection and Water Engineering, Faculty of Environmental Engineering, Vilnius Gediminas Technical University, Vilnius LT-10223, Lithuania
| | - R Vaiškūnaitė
- Department of Environmental Protection and Water Engineering, Faculty of Environmental Engineering, Vilnius Gediminas Technical University, Vilnius LT-10223, Lithuania
| | - J Šarko
- Department of Environmental Protection and Water Engineering, Faculty of Environmental Engineering, Vilnius Gediminas Technical University, Vilnius LT-10223, Lithuania.
| |
Collapse
|
12
|
Morales-Figueroa C, Teutli-Sequeira A, Linares-Hernández I, Martínez-Miranda V, Garduño-Pineda L, Barrera-Díaz CE, García-Morales MA, Mier-Quiroga MA. Phosphate removal from food industry wastewater by chemical precipitation treatment with biocalcium eggshell. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:549-565. [PMID: 33678136 DOI: 10.1080/10934529.2021.1895591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The physicochemical treatment (PT) of food industry wastewater was investigated. In the first stage, calcium magnesium acetate (CaMgAc4) was synthesized using eggshell (biocalcium), magnesium oxide and acetic acid in a 1:1:1 stoichiometric ratio. In the synthesis process, the thermodynamic parameters (ΔH, ΔS and ΔG) indicated that the reaction was endothermic and spontaneous. The samples were characterized by infrared spectroscopy (IR), scanning electronic microscopy (SEM), X-ray diffraction (XRD) and electron X-ray dispersive spectroscopy (EDS). CaMgAc4 was used to precipitate the phosphate matter. IR analysis revealed that the main functional groups were representative of the acetate compounds and the presence of OH- groups and carbonates. In the physicochemical treatment, a response surface design was used to determine the variables that influence the process (pH, t, and concentration), and the response variable was phosphorus removal. The treatments were carried out in the wastewater industry with an initial concentration of 658 mg/L TP. The optimal conditions of the precipitation treatment were pH 12, time 12 min, and a CaMgAc4 concentration of 13.18 mg/L. These conditions allowed the total elimination (100%) of total phosphorus and phosphates, 81.43% BOD5 and 81.0% COD, 98.9% turbidity, 95.01% color, and 92% nitrogen matter.
Collapse
Affiliation(s)
- Cristina Morales-Figueroa
- Facultad de Química, Unidad Colón, Paseo Colón esq. Paseo Tollocan, Residencial Colonia Ciprés, Toluca, Estado de México, México
| | - Alejandra Teutli-Sequeira
- Cátedras CONACyT-IITCA, Mexico City, México
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Laura Garduño-Pineda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| | - Carlos E Barrera-Díaz
- Facultad de Química, Unidad Colón, Paseo Colón esq. Paseo Tollocan, Residencial Colonia Ciprés, Toluca, Estado de México, México
| | | | - Miroslava A Mier-Quiroga
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Toluca, Estado de México, México
| |
Collapse
|
13
|
Efficient heterogeneous precipitation and separation of iron in copper-containing solution using dolomite. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Nagoya S, Nakamichi S, Kawase Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron: A novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|