1
|
Mao D, Li G, Liang M, Wang S, Ren X. Dietary patterns and multiple chronic diseases in older adults. Nutr Metab (Lond) 2024; 21:36. [PMID: 38915027 PMCID: PMC11194917 DOI: 10.1186/s12986-024-00814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The prevalence rate of multiple chronic diseases among the elderly is relatively high, posing a risk to their health and also imposing a financial burden on them. Optimal dietary patterns have positive effects on multiple chronic diseases. This study aimed to identify dietary patterns associated with multiple chronic diseases in older adults. METHODS Dietary intake was assessed through two non-consecutive 24-hour dietary recalls. The presence of multiple chronic diseases was assessed based on the existence of dyslipidemia, hypertension, chronic kidney disease, sleep disorders, diabetes, moderate or severe depressive symptoms, and cognitive impairment, with two or more of these conditions being considered. Latent class analysis was used to identify types of multiple chronic diseases, and two-step cluster analysis was used to determine individual dietary patterns. Logistic regression analysis with robust standard errors was conducted to determine the associations between dietary patterns and types of multiple chronic diseases. RESULTS Three dietary patterns and three types of multiple chronic diseases were identified. Individuals following a diet rich in legumes, meat, vegetables and fruits (HLMVF dietary pattern) were 59% less likely to have the cardiometabolic cognitive impairment comorbidity (CCC) than those following a diet rich in milk and eggs but with low grain intake (HME-LG) (OR = 0.41, 95% CI: 0.27-0.64, P < 0.001) and 66% less likely to have the especially sleep disorders comorbidity (ESC) than those following a diet rich in grains but lacking milk and eggs (HG-LME) (OR = 0.34, 95% CI: 0.14-0.87, P < 0.05). DISCUSSION The HLMVF dietary pattern may serve as a healthy dietary pattern to reduce the incidence of multiple chronic diseases and should be promoted among the older adult population.
Collapse
Affiliation(s)
- Danhui Mao
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
- Health Management and Policy Research Center, School of Management, Shanxi Medical University, Taiyuan, China.
| | - Gongkui Li
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Moxuan Liang
- Health Management and Policy Research Center, School of Management, Shanxi Medical University, Taiyuan, China
| | - Shiyun Wang
- Health Management and Policy Research Center, School of Management, Shanxi Medical University, Taiyuan, China
| | - Xiaojun Ren
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
| |
Collapse
|
2
|
Jagaba AH, Kutty SRM, Isa MH, Ghaleb AAS, Lawal IM, Usman AK, Birniwa AH, Noor A, Abubakar S, Umaru I, Saeed AAH, Afolabi HK, Soja UB. Toxic Effects of Xenobiotic Compounds on the Microbial Community of Activated Sludge. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ahmad Hussaini Jagaba
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Shamsul Rahman Mohamed Kutty
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Universiti Teknologi PETRONAS Centre of Urban Resource Sustainability Institute of Self-Sustainable Building 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Mohamed Hasnain Isa
- Universiti Teknologi Brunei Civil Engineering Programme Faculty of Engineering Tungku Highway BE1410 Gadong Brunei Darussalam
| | - Aiban Abdulhakim Saeed Ghaleb
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Ibrahim Mohammed Lawal
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
- University of Strathclyde Department of Civil and Environmental Engineering Glasgow United Kingdom
| | | | | | - Azmatullah Noor
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Sule Abubakar
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Ibrahim Umaru
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Anwar Ameen Hezam Saeed
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Haruna Kolawole Afolabi
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Usman Bala Soja
- Federal University Dutsin-Ma Department of Civil Engineering P.M.B. 5001 Dutsin-Ma Katsina State Nigeria
| |
Collapse
|
3
|
Ma L, Andoh V, Shen Z, Liu H, Li L, Chen K. Subchronic toxicity of magnesium oxide nanoparticles to Bombyx mori silkworm. RSC Adv 2022; 12:17276-17284. [PMID: 35765455 PMCID: PMC9186304 DOI: 10.1039/d2ra01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Despite many research efforts devoted to the study of the effects of magnesium oxide nanoparticles (MgO NPs) on cells or animals in recent years, data related to the potential long-term effects of this nanomaterial are still scarce. The aim of this study is to explore the subchronic effects of MgO NPs on Bombyx mori silkworm, a complete metamorphosis insect with four development stages (egg, larva, pupa, month). With this end in view, silkworm larvae were exposed to MgO NPs at different mass concentrations (1%, 2%, 3% and 4%) throughout their fifth instar larva. Their development, survival rate, cell morphology, gene expressions, and especially silk properties were compared with a control. The results demonstrate that MgO NPs have no significant negative impact on the growth or tissues. The cocooning rate and silk quality also display normal results. However, a total of 806 genes are differentially expressed in the silk gland (a vital organ for producing silk). GO (Gene Ontology) results show that the expression of many genes related to transporter activity are significantly changed, revealing that active transport is the main mechanism for the penetration of MgO NPs, which also proves that MgO NPs are adsorbed by cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis demonstrates that the longevity regulating pathway-worm, peroxisome and MAPK signaling pathway are closely involved in the biological effects of MgO NPs. Overall, subchronic exposure to MgO NPs induced no apparent negative impact on silkworm growth or silks but changed the expressions of some genes.
Collapse
Affiliation(s)
- Lin Ma
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Vivian Andoh
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China .,Institute of Life Science, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Haiyan Liu
- Tea and Food Science and Technology Institute, Jiangsu Vocational College of Agriculture and Forestry Jurong 212400 China
| | - Long Li
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Keping Chen
- Institute of Life Science, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| |
Collapse
|
4
|
Fouda A, Eid AM, Abdel-Rahman MA, EL-Belely EF, Awad MA, Hassan SED, AL-Faifi ZE, Hamza MF. Enhanced Antimicrobial, Cytotoxicity, Larvicidal, and Repellence Activities of Brown Algae, Cystoseira crinita-Mediated Green Synthesis of Magnesium Oxide Nanoparticles. Front Bioeng Biotechnol 2022; 10:849921. [PMID: 35295650 PMCID: PMC8920522 DOI: 10.3389/fbioe.2022.849921] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Herein, the metabolites secreted by brown algae, Cystoseira crinita, were used as biocatalyst for green synthesis of magnesium oxide nanoparticles (MgO-NPs). The fabricated MgO-NPs were characterized using UV-vis spectroscopy, Fourier transforms infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy linked with energy-dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed successful formation of crystallographic and spherical MgO-NPs with sizes of 3-18 nm at a maximum surface plasmon resonance of 320 nm. Moreover, EDX analysis confirms the presence of Mg and O in the sample with weight percentages of 54.1% and 20.6%, respectively. Phyco-fabricated MgO-NPs showed promising activities against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans with MIC values ranging between 12.5 and 50 μg mL-1. The IC50 value of MgO-NPs against cancer cell lines (Caco-2) was 113.4 μg mL-1, whereas it was 141.2 μg mL-1 for normal cell lines (Vero cell). Interestingly, the green synthesized MgO-NPs exhibited significant larvicidal and pupicidal activity against Musca domestica. At 10 μg mL-1 MgO-NPs, the highest mortality percentages were 99.0%, 95.0%, 92.2%, and 81.0% for I, II, III instars' larvae, and pupa of M. domestica, respectively, with LC50 values (3.08, 3.49, and 4.46 μg mL-1), and LC90 values (7.46, 8.89, and 10.43 μg mL-1), respectively. Also, MgO-NPs showed repellence activity for adults of M. domestica at 10 μg mL-1 with 63.0%, 77.9%, 84.9%, and 96.8% after 12, 24, 48, and 72 h, respectively.
Collapse
Affiliation(s)
- Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Eid
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Ehab F. EL-Belely
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Zarraq E. AL-Faifi
- Center for Environment Research and Studies, Jazan University, Jazan, Saudi Arabia
| | - Mohammed F. Hamza
- School of Nuclear Science and Technology, University of South China, Heng Yang, China
- Nuclear Materials Authority, Cairo, Egypt
| |
Collapse
|
5
|
Wang X, Han T, Sun Y, Geng H, Li B, Dai H. Effects of nano metal oxide particles on activated sludge system: Stress and performance recovery mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117408. [PMID: 34049134 DOI: 10.1016/j.envpol.2021.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Nano metal oxide particles (NMOPs) are widely used in daily life because of their superior performance, and inevitably enter the sewage treatment system. Pollutants in sewage are adsorbed and degraded in wastewater treatment plants (WWTPs) depending on the microbial aggregates of activated sludge system to achieve sewage purification. NMOPs may cause ecotoxicity to the microbial community and metabolism due to their complex chemical behavior, resulting in a potential threat to the safe and steady operation of activated sludge system. It is of great significance to clarify the influencing mechanism of NMOPs on activated sludge system and reduce the risk of WWTPs. Herein, we first introduce the physicochemical behavior of six typical engineering NMOPs including ZnO, TiO2, CuO, CeO2, MgO, and MnO2 in water environment, then highlight the principal mechanisms of NMOPs for activated sludge system. In particular, the performance recovery mechanisms of activated sludge systems in the presence of NMOPs and their future development trends are well documented and discussed extensively. This review can provide a theoretical guidance and technical support for predicting and evaluating the potential threat of NMOPs on activated sludge systems, and promoting the establishment of effective control strategies and performance recovery measures of biological wastewater treatment process under the stress of NMOPs.
Collapse
Affiliation(s)
- Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hongya Geng
- Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK.
| | - Bing Li
- Jiangsu Zhongchuang Qingyuan Technology Co., Ltd., Yancheng, 224000, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; School of Environmental and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Fouda A, Awad MA, Eid AM, Saied E, Barghoth MG, Hamza MF, Awad MF, Abdelbary S, Hassan SED. An Eco-Friendly Approach to the Control of Pathogenic Microbes and Anopheles stephensi Malarial Vector Using Magnesium Oxide Nanoparticles (Mg-NPs) Fabricated by Penicillium chrysogenum. Int J Mol Sci 2021; 22:5096. [PMID: 34065835 PMCID: PMC8151347 DOI: 10.3390/ijms22105096] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/14/2022] Open
Abstract
The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7-40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL-1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5-15.5 ppm for I-IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Mohammed G. Barghoth
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
- Nuclear Materials Authority, El-Maadi, Cairo POB 530, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Salah Abdelbary
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (E.S.); (M.G.B.); (S.A.)
| |
Collapse
|
7
|
Wang R, Lou J, Fang J, Cai J, Hu Z, Sun P. Effects of heavy metals and metal (oxide) nanoparticles on enhanced biological phosphorus removal. REV CHEM ENG 2020. [DOI: 10.1515/revce-2018-0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractWith the rapid growth of economics and nanotechnology, a significant portion of the anthropogenic emissions of heavy metals and nanoparticles (NPs) enters wastewater streams and discharges to wastewater treatment plants, thereby potentially posing a risk to the bacteria that facilitate the successful operation of the enhanced biological phosphorus (P) removal (EBPR) process. Although some efforts have been made to obtain detailed insights into the effects of heavy metals and metal (oxide) nanoparticles [Me(O)NPs], many unanswered questions remain. One question is whether the toxicity of Me(O)NPs originates from the released metal ions. This review aims to holistically evaluate the effects of heavy metals and Me(O)NPs. The interactions among extracellular polymeric substances, P, and heavy metals [Me(O)NPs] are presented and discussed for the first time. The potential mechanisms of the toxicity of heavy metals [Me(O)NPs] are summarized. Additionally, mathematical models of the toxicity and removal of P, heavy metals, and Me(O)NPs are overviewed. Finally, knowledge gaps and opportunities for further study are discussed to pave the way for fully understanding the inhibition of heavy metals [Me(O)NPs] and for reducing their inhibitory effect to maximize the reliability of the EBPR process.
Collapse
Affiliation(s)
- Ruyi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhirong Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- GL Environment Inc., Hamilton, Canada
| | - Peide Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
8
|
Suresh M, Jeevanandam J, Chan YS, Danquah MK, Kalaiarasi JMV. Opportunities for Metal Oxide Nanoparticles as a Potential Mosquitocide. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00703-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Dissolved Organic Matter Modulates Algal Oxidative Stress and Membrane System Responses to Binary Mixtures of Nano-Metal-Oxides (nCeO 2, nMgO and nFe 3O 4) and Sulfadiazine. NANOMATERIALS 2019; 9:nano9050712. [PMID: 31067831 PMCID: PMC6566580 DOI: 10.3390/nano9050712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Joint biomarker responses, oxidative stress and membrane systems, were determined for nano-metal-oxides (nMeO, i.e., nCeO2, nMgO, and nFe3O4) and sulfadiazine (SDZ) exposed at relevant low concentrations to two freshwater microalgae Scenedesmus obliquus and Chlorella pyrenoidosa. The impacts of dissolved organic matter (DOM) on the joint biomarker responses were also investigated. Results indicated that the presence of SDZ significantly decreased the level of intercellular reactive oxygen species (ROS) in the algal cells exposed to each nMeO. Reduction of cell membrane permeability (CMP) and mitochondrial membrane potential (MMP) in the algal cells was observed when the algae were exposed to the mixture of SDZ and the nMeO. The degree of reduction of the ROS level, CMP, and MMP significantly went down with the addition of DOM to a certain extent. Changes in cellular oxidative stress and membrane function depended on the types of both nMeO and algal species. This contribution provides an insight into the hazard assessment of a mixture consisting of emerging contaminants and DOM, as they can coexist in the aquatic environment.
Collapse
|
10
|
Kandiah K, Jeevanantham T, Ramasamy B. Reliability of antioxidant potential and in vivo compatibility with extremophilic actinobacterial-mediated magnesium oxide nanoparticle synthesis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:862-872. [DOI: 10.1080/21691401.2019.1580287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kavitha Kandiah
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | - Thenmozhi Jeevanantham
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| | - Balagurunathan Ramasamy
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|