1
|
Ciampi P, Cassiani G, Deidda GP, Esposito C, Rizzetto P, Pizzi A, Papini MP. Understanding the dynamics of enhanced light non-aqueous phase liquids (LNAPL) remediation at a polluted site: Insights from hydrogeophysical findings and chemical evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172934. [PMID: 38703835 DOI: 10.1016/j.scitotenv.2024.172934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
This study intricately unfolds a pioneering methodology for remediating contaminants in a persistent light non-aqueous phase liquids (LNAPL)-contaminated site. The remediation strategy seamlessly integrates enhanced desorption and in-situ chemical oxidation (ISCO), orchestrating the injection of PetroCleanze® (a desorbent) and RegenOx® (an oxidizer) through meticulously designed wells. These injections, based on detailed geological and hydrogeological assessments, aim at mobilizing residual contaminants for subsequent extraction. Real-time subsurface dynamics are investigated through geophysical monitoring, employing electrical resistivity tomography (ERT) to trace reagent migration pathways via their effect on bulk electrical conductivity. The integration of groundwater sampling data aims at providing additional insights into the transformations of contaminants in the spatiotemporal context. Vivid two-dimensional time-lapse ERT sections showcase the evolution of resistivity anomalies, providing high-resolution evidence of the heterogeneity, dispersion pathways of desorbent and oxidant, and residual LNAPL mobilization. Hydrochemical analyses complement this, revealing effective mobilization processes with increasing aqueous concentrations of total petroleum hydrocarbons (TPH) over time. Speciation analysis unveils the intricate interplay of desorption and oxidation, portraying the dynamic fractionation of hydrocarbon components. The hydrogeophysical and data-driven framework not only delivers qualitative and quantitative insights into reagent and contaminant distribution but also enhances understanding of spatial and temporal physio-chemical changes during the remediation process. Time-lapse ERT visually narrates the reagent's journey through time, while chemical analyses depict the unfolding processes of desorption and oxidation across space and time. The coupling of hydrogeophysical and chemical findings pictures the transformations of pollutants following the sequence of product injection and the push and pull activities, capturing the removal of mobilized contaminants through hydraulic barrier wells. This enhanced understanding proves instrumental towards optimizing and tailoring remediation efforts, especially in heterogeneous environmental settings. This study establishes a new standard for a sophisticated and innovative contaminant remediation approach, advancing environmental practices through the harmonized analysis of geophysical and chemical data.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgio Cassiani
- Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padua, Italy.
| | - Gian Piero Deidda
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, via Marengo, 2, 09123 Cagliari, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Paolo Rizzetto
- Logistic Headquarter of Italian Air Force, Viale dell'Università, 4, 00185 Rome, Italy.
| | - Andrea Pizzi
- Logistic Headquarter of Italian Air Force, Viale dell'Università, 4, 00185 Rome, Italy.
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Sookhak Lari K, Davis GB, Rayner JL, Bastow TP. Advective and diffusive gas phase transport in vadose zones: Importance for defining vapour risks and natural source zone depletion of petroleum hydrocarbons. WATER RESEARCH 2024; 255:121455. [PMID: 38527413 DOI: 10.1016/j.watres.2024.121455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Quantifying the interlinked behaviour of the soil microbiome, fluid flow, multi-component transport and partitioning, and biodegradation is key to characterising vapour risks and natural source zone depletion (NSZD) of light non-aqueous phase liquid (LNAPL) petroleum hydrocarbons. Critical to vapour transport and NSZD is transport of gases through the vadose zone (oxygen from the atmosphere, volatile organic compounds (VOCs), methane and carbon dioxide from the zone of LNAPL biodegradation). Volatilisation of VOCs from LNAPL, aerobic biodegradation, methanogenesis and heat production all generate gas pressure changes that may lead to enhanced gas fluxes apart from diffusion. Despite the importance of the gaseous phase dynamics in the vadose zone processes, the relative pressure changes and consequent scales of advective (buoyancy and pressure driven) / diffusive transport is less studied. We use a validated multi-phase multi-component non-isothermal modelling framework to differentiate gas transport mechanisms. We simulate a multicomponent unweathered gasoline LNAPL with high VOC content to maximise the potential for pressure changes due to volatilisation and to enable the joint effects of methanogenesis and shallower aerobic biodegradation of vapours to be assessed, along with heat production. Considering a uniform fine sand profile with LNAPL resident in the water table capillary zone, results suggest that biodegradation plays the key role in gas phase formation and consequent pressure build-up. Results suggest that advection is the main transport mechanism over a thin zone inside the LNAPL/capillary region, where the effective gaseous diffusion is very low. In the bulk of the vadose zone above the LNAPL region, the pressure change is minimal, and gaseous diffusion is dominant. Even for high biodegradation rate cases, pressure build-up due to heat generation (inducing buoyancy effects) is smaller than the contribution of gas formation due to biodegradation. The findings are critical to support broader assumptions of diffusive transport being dominant in vapour transport and NSZD assessments.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| | - Greg B Davis
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - John L Rayner
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Trevor P Bastow
- CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| |
Collapse
|
3
|
Chen T, Zhang Y, Fu B, Huang W. An evaluation model for in-situ bioremediation technology of petroleum hydrocarbon contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123299. [PMID: 38185355 DOI: 10.1016/j.envpol.2024.123299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Considering the interference of the complexity of underground environment to the bioremediation scheme, an evaluation model for bioremediation technology in the soil source area of oil contaminated sites was established. On the basis of traditional CDE model, a compartment model was coupled to express the adsorption and degradation process, and the spatial expression of biodegradation was enriched through environment-dependent factors. The visualization of the model was achieved based on COMSOL Multiphysics software platform. Two sets of indoor sandbox experiments on natural attenuation and bioaugmentation were carried out for 120 days to verify the prediction function of the model. The results showed that bioaugmentation greatly improved the remediation effect. Petroleum hydrocarbons with different occurrence states exhibited different spatial distributions under the influence of environmental factors. The prediction accuracy evaluation results of total petroleum hydrocarbons, bio available hydrocarbons and non extractable hydrocarbons showed excellent fitting degree, and the model had a good prediction function for petroleum hydrocarbon in soil under different bioremediation scenarios. This model can be used to screen bioremediation technical schemes, prevent pollution and assess risk of petroleum hydrocarbon contaminated sites.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yafu Zhang
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Bo Fu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbiao Huang
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
4
|
Mineo S. Groundwater and soil contamination by LNAPL: State of the art and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162394. [PMID: 36858232 DOI: 10.1016/j.scitotenv.2023.162394] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Contamination by Light Non-Aqueous Phase Liquids (LNAPL) represents a challenge due to the difficulties encountered in its underground assessment and recovery. The major risks arising from subsoil LNAPL accumulation face human health and environment, gaining a social relevance also in the frame of a continuously changing climate. This paper reports on a literature review about the underground contamination by LNAPL, with the aims of providing a categorization of the aspects involved in this topic, analyzing the current state of the art, underlying potential lacks and future perspectives. The review was focused on papers published in the 2012-2022 time-interval, in journals indexed in Scopus and WoS databases, by querying "LNAPL" within article title, abstract and/or key words. 245 papers were collected and classified according to three "key approaches" -namely laboratory activity, field based-data studies and mathematical simulations- and subordinate "key themes", so to allow summarizing and commenting the main aspects based on the application setting, content and scope. Results show that there is a wide experience on plume dynamics and evolution, detection and monitoring through direct and indirect surveys, oil recovery and natural attenuation processes. Few cues of innovations were found regarding both the use of new materials and/or specific field configuration for remediation, and the application of new techniques for plume detection. Some limitations were found in the common oversimplification of the polluted media in laboratory or mathematical models, where the contamination is set within homogeneous porous environments, and in the low number of studies focused on rock masses, where the discontinuous hydraulic behavior complicates the address and modeling of the issue. This paper represents a reference for a quick update on the addressed topic, along with a starting point to develop new ideas and cues for the advance in one of the greatest environmental banes of the current century.
Collapse
Affiliation(s)
- S Mineo
- University of Catania, Department of Biological, Geological and Environmental Sciences, Corso Italia 57, Catania 95123, Italy.
| |
Collapse
|
5
|
Davis GB, Rayner JL, Donn MJ, Johnston CD, Lukatelich R, King A, Bastow TP, Bekele E. Tracking NSZD mass removal rates over decades: Site-wide and local scale assessment of mass removal at a legacy petroleum site. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104007. [PMID: 35405439 DOI: 10.1016/j.jconhyd.2022.104007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Long-term estimates of natural source zone depletion (NSZD) rates for petroleum LNAPL (light non-aqueous phase liquid) sites are not available. One-off measurements are often thought valid over the lifetime of LNAPL sites. In the context of site-wide LNAPL mass estimates, we report site-specific gasoline and diesel NSZD rates spanning 21-26 years. Using depth profiles of soil gases (oxygen, carbon dioxide, methane, volatiles) above LNAPL, NSZD rates were estimated in 1994, 2006 and 2020 for diesel and 1999, 2009 and 2020 for gasoline. Each date also had soil-core mass estimates, which together with NSZD rates allow estimation of the longevity for LNAPL presence. Site-wide coring (in 1992, 2002, 2007) estimated LNAPL mass reductions of 12,000 t. For diesel NSZD, the ratio of NSZD rates for 2006 (16,000-49,000 L/ha/y) to those in 2020 (2600-14,000 L/ha/y) was ~3-6. By 2020, the 1994 diesel NSZD rates would have predicted the entire removal of measured mass (16-42 kg/m2). For gasoline, NSZD rates in 1999 were extremely high (50,000-270,000 L/ha/y) but 9-27 times lower (5800-10,000 L/ha/y) a decade later. The gasoline NSZD rates in 1999 predicted near complete mass removal in 2-12 years, but 10-11 kg/m2 was measured 10 and 21 years later which is 26% of the initial mass in 1999. The outcomes substantiate the need to understand NSZD rate changes over the lifetime of LNAPL-impacted sites.
Collapse
Affiliation(s)
- G B Davis
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia.
| | - J L Rayner
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| | - M J Donn
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| | - C D Johnston
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| | - R Lukatelich
- Consultant, Baldivis, Western Australia, Australia
| | - A King
- Remediation Management, BP Australia Pty Ltd, Melbourne, Victoria, Australia
| | - T P Bastow
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| | - E Bekele
- CSIRO Land and Water, 147 Underwood Avenue Floreat, Western Australia 6014, Australia
| |
Collapse
|
6
|
Ciampi P, Esposito C, Cassiani G, Deidda GP, Flores-Orozco A, Rizzetto P, Chiappa A, Bernabei M, Gardon A, Petrangeli Papini M. Contamination presence and dynamics at a polluted site: Spatial analysis of integrated data and joint conceptual modeling approach. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104026. [PMID: 35605355 DOI: 10.1016/j.jconhyd.2022.104026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Contaminated sites are complex systems posing challenges for their characterization as both contaminant distribution and hydrogeological properties vary markedly at the metric scale, yet may extend over broad areas, with serious issues of spatial under-sampling in the space. Characterization with sufficient spatial resolution is thus, one of the main concerns and still open areas of research. To this end, the joint use of direct and indirect (i.e., geophysical) investigation methods is a very promising approach. This paper presents a case study aspiring to demonstrate the benefit of a multidisciplinary approach in the characterization of a hydrocarbon-contaminated site. Detailed multi-source data, collected via stratigraphic boreholes, laser-induced fluorescence (LIF) surveys, electrical resistivity tomography (ERT) prospecting, groundwater hydrochemical monitoring, and gas chromatography-mass spectrometry (GC-MS) analyses were compiled into an interactive big-data package for modeling activities. The final product is a comprehensive conceptual hydro-geophysical model overlapping multi-modality data and capturing hydrogeological and geophysical structures, as well as contamination distribution in space and dynamics in time. The convergence of knowledge in the joint model verifies the possibility of discriminating geophysical findings based on lithological features and contamination effects, unmasking the real characteristics of the pollutant, the contamination mechanisms, and the residual phase hydrocarbon sequestration linked to the hydrogeological dynamics and adopted remediation actions. The emerging conceptual site model (CSM), emphasizing the necessity of a large amount of multi-source data for its reliable, high-resolution reconstruction, appears as the necessary tool for the design of remedial actions, as well as for the monitoring of remediation performance.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgio Cassiani
- Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padua, Italy.
| | - Gian Piero Deidda
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, via Marengo, 2, 09123 Cagliari, Italy.
| | | | - Paolo Rizzetto
- Logistic Headquarter of Italian Air Force, Viale dell'Università, 4, 00185 Rome, Italy.
| | - Andrea Chiappa
- Department of Technological Aerospace Materials-Flight Test Center of Italian Air Force, Pratica di Mare, 00071 Pomezia, Rome, Italy.
| | - Manuele Bernabei
- Department of Technological Aerospace Materials-Flight Test Center of Italian Air Force, Pratica di Mare, 00071 Pomezia, Rome, Italy.
| | - Andrea Gardon
- Department of Technological Aerospace Materials-Flight Test Center of Italian Air Force, Pratica di Mare, 00071 Pomezia, Rome, Italy.
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Migration Law of LNAPLs in the Groundwater Level Fluctuation Zone Affected by Freezing and Thawing. WATER 2022. [DOI: 10.3390/w14081289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Freezing and thawing can cause dynamic fluctuations of the groundwater level, resulting in the migration and retention of LNAPLs. However, this process is difficult to observe visually, and a suitable simulation method for its quantitative calculation is lacking. In this study, a numerical simulation is established by coupling the HYDRUS-1D software and the TOUGH program to realize dynamic simulation of the entire process of soil temperature changes, water migration, water level fluctuation, and redistribution of LNAPLs during the freeze–thaw process. The results of the study show that the process of soil freezing and thawing causes water migration, which in turn causes groundwater level fluctuation, leading to the migration and redistribution of LNAPLs within the water level fluctuation zone. In this process, the soil particle size and porosity control the response degree and speed of the water level under freezing and thawing and the spatiotemporal distribution of LNAPLs by affecting the soil temperature, capillary force, and water migration. The migration ability of free LNAPLs is determined by their own density and viscosity; the retention of residual LNAPLs is affected by soil porosity and permeability as well as LNAPL viscosity. The results of this study can not only be used to develop a simulation method for the migration and retention mechanism of LNAPLs in cold regions but also serve as a scientific and theoretical basis for LNAPL pollution control in seasonal frozen soil regions.
Collapse
|
8
|
Sookhak Lari K, Davis GB, Rayner JL. Towards a digital twin for characterising natural source zone depletion: A feasibility study based on the Bemidji site. WATER RESEARCH 2022; 208:117853. [PMID: 34800855 DOI: 10.1016/j.watres.2021.117853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) may be a valid long-term management option at petroleum impacted sites. However, its future long-term reliability needs to be established. NSZD includes partitioning, biotic and abiotic degradation of LNAPL components plus multiphase fluid dynamics in the subsurface. Over time, LNAPL components are depleted and those partitioning to various phases change, as do those available for biodegradation. To accommodate these processes and predict trends and NSZD over decades to centuries, for the first time, we incorporated a multi-phase multi-component multi-microbe non-isothermal approach to representatively simulate NSZD at field scale. To validate the approach we successfully mimic data from the LNAPL release at the Bemidji site. We simulate the entire depth of saturated and unsaturated zones over the 27 years of post-release measurements. The study progresses the idea of creating a generic digital twin of NSZD processes and future trends. Outcomes show the feasibility and affordability of such detailed computational approaches to improve decision-making for site management and restoration strategies. The study provided a basis to progress a computational digital twin for complex subsurface systems.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley,WA 6009, Australia
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia
| |
Collapse
|
9
|
Sookhak Lari K, King A, Rayner JL, Davis GB. Quantifying the benefits of in-time and in-place responses to remediate acute LNAPL release incidents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112356. [PMID: 33765523 DOI: 10.1016/j.jenvman.2021.112356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/06/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Acute large volume spills from storage tanks of petroleum hydrocarbons as light non aqueous phase liquids (LNAPLs) can contaminate soil and groundwater and may have the potential to pose explosive and other risks. In consideration of an acute LNAPL release scenario, we explore the value of a rapid remediation response, and the value of installing remediation infrastructure in close proximity to the spill location, in effecting greater recovery of LNAPL mass from the subsurface. For the first time, a verified three-dimensional multi-phase numerical framework and supercomputing resources was applied to explore the significance of in-time and in-place remediation actions. A sand aquifer, two release volumes and a low viscosity LNAPL were considered in key scenarios. The time of commencement of LNAPL remediation activities and the location of recovery wells were assessed requiring asymmetric computational considerations. The volume of LNAPL released considerably affected the depth of LNAPL penetration below the groundwater table, the radius of the plume over time and the recoverable LNAPL mass. The remediation efficiency was almost linearly correlated with the commencement time, but was a non-linear function of the distance of an extraction well from the spill release point. The ratio of the recovered LNAPL in a well located at the centre of the spill/release compared to a well located 5 m away was more than 3.5, for recovery starting only 7 days after the release. Early commencement of remediation with a recovery well located at the centre of the plume was estimated to recover 190 times more LNAPL mass than a one-month delayed commencement through a well 15 m away from the centre of the LNAPL plume. Optimally, nearly 40% of the initially released LNAPL could be recovered within two months of commencing LNAPL recovery actions.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Andrew King
- BP Remediation Management, Melbourne, Australia
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
10
|
Flores Orozco A, Ciampi P, Katona T, Censini M, Papini MP, Deidda GP, Cassiani G. Delineation of hydrocarbon contaminants with multi-frequency complex conductivity imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144997. [PMID: 33736329 DOI: 10.1016/j.scitotenv.2021.144997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
The characterization of contaminated sites is a serious issue that requires a number of techniques to be deployed in the field to reconstruct the geometry, hydraulic properties and state of contamination of the shallow subsurface, often at the hundreds of meter scale with metric resolution. Among the techniques that have been proposed to complement direct investigations (composed of drilling, sampling, and laboratory characterization) are geophysical methods, which can provide extensive spatial coverage both laterally and at depth with the required resolution. However, geophysical methods only measure physical properties that are indirectly related to contamination, and their correlation may be difficult to ascertain without direct ground truth. In this study, we present a successful example where the results of complex conductivity measurements conducted in an imaging framework are compared with direct evidence of subsoil contamination at a jet fuel impacted site. Thus, proving that a combination of direct and indirect investigations can be successfully used to image a site in its complex (potentially 3D) structure in order to build a reliable conceptual model of the site.
Collapse
Affiliation(s)
| | - Paolo Ciampi
- Department of Earth Sciences, University of Rome "La Sapienza", Rome, Italy
| | - Timea Katona
- Dept. of Geodesy and Geoinformation, TU Wien, Vienna, Austria
| | - Matteo Censini
- Dept. of Geosciences, University of Padova, Padova, Italy
| | | | - Gian Piero Deidda
- Dept. of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
11
|
Engelmann C, Sookhak Lari K, Schmidt L, Werth CJ, Walther M. Towards predicting DNAPL source zone formation to improve plume assessment: Using robust laboratory and numerical experiments to evaluate the relevance of retention curve characteristics. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124741. [PMID: 33352423 DOI: 10.1016/j.jhazmat.2020.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/13/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
We conducted multiple laboratory trials in a robust and repeatable experimental layout to study dense non-aqueous phase liquid (DNAPL) source zone formation. We extended an image processing and analysis framework to derive DNAPL saturation distributions from reflective optical imaging data, with volume balance deviations < 5.07%. We used a multiphase flow model to simulate source zone formation in a Monte Carlo approach, where the parameter space was defined by the variation of retention curve parameters. Integral and geometric measures were used to characterize the source zones and implemented into a multi-criteria objective function. The latter showed good agreement between observation data and simulation results for effective DNAPL saturation values > 0.04, especially for early stages of DNAPL migration. The common hypothesis that parameters defining the DNAPL-water retention curves are constant over time was not confirmed. Once DNAPL pooling started, the optimal fit in the parameter space was significantly different compared to the earlier DNAPL migration stages. We suspect more complex processes (e.g., capillary hysteresis, adsorption) to become relevant during pool formation. Our results reveal deficits in the grayscale-DNAPL saturation relationship definition and laboratory estimation of DNAPL-water retention curve parameters to overcome current limitations to describe DNAPL source zone formation.
Collapse
Affiliation(s)
- Christian Engelmann
- Faculty of Environmental Sciences, Institute of Groundwater Management, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; Department Environmental Informatics, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia.
| | - Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Luisa Schmidt
- Faculty of Environmental Sciences, Institute of Groundwater Management, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; Faculty of Environmental Sciences, Institute Photogrammetry and Remote Sensing, Juniorprofessorship in Environmental Remote Sensing, Technische Universität Dresden, Helmholtzstraße 10, 01069 Dresden, Germany; Department Monitoring and Exploration Technologies, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Charles J Werth
- Department of Civil, Architectural and Environmental Engineering, Bettie Margaret Smith Chair in Environmental Health Engineering, University of Texas at Austin, Texas, United States
| | - Marc Walther
- Faculty of Environmental Sciences, Institute of Groundwater Management, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; Department Environmental Informatics, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
12
|
Unravelling Microbial Communities Associated with Different Light Non-Aqueous Phase Liquid Types Undergoing Natural Source Zone Depletion Processes at a Legacy Petroleum Site. WATER 2021. [DOI: 10.3390/w13070898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Petroleum contaminants are exposed to weathering when released into environment, resulting in the alteration of their chemical composition. Here, we investigated microbial communities through the soil profile at an industrial site, which was exposed to various petroleum products for over 50 years. The petroleum is present as light non-aqueous phase liquid (LNAPL) and is undergoing natural source zone depletion (NSZD). Microbial community composition was compared to the contaminant type, concentration, and its depth of obtained soil cores. A large population of Archaea, particularly Methanomicrobia and Methanobacteria and indication of complex syntrophic relationships of methanogens, methanotrophs and bacteria were found in the contaminated cores. Different families were enriched across the LNAPL types. Results indicate methanogenic or anoxic conditions in the deeper and highly contaminated sections of the soil cores investigated. The contaminant was highly weathered, likely resulting in the formation of recalcitrant polar compounds. This research provides insight into the microorganisms fundamentally associated with LNAPL, throughout a soil depth profile above and below the water table, undergoing NSZD processes at a legacy petroleum site. It advances the potential for integration of microbial community effects on bioremediation and in response to physicochemical partitioning of LNAPL components from different petroleum types.
Collapse
|
13
|
Qi S, Luo J, O'Connor D, Wang Y, Hou D. A numerical model to optimize LNAPL remediation by multi-phase extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137309. [PMID: 32087590 DOI: 10.1016/j.scitotenv.2020.137309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Light non-aqueous phase liquid (LNAPL) contaminated sites pose a risk to human health and the natural environment. Multi-phase extraction (MPE) is one of the most widely used technologies to remediate these sites. Thus, it is important to optimize MPE systems to improve their effectiveness and cost-efficiency. In this study, we developed a numerical model to optimize LNAPL mass removal by MPE, in which the aquifer domain was simplified as a cylinder with a single MPE extraction well located at the center. A dual-pump extraction system was applied to the model, which involved vacuum enhanced recovery to remove volatilized gaseous phase contaminants and a submerged pump to remove NAPL and contaminants in groundwater. After the model was validated with field data, the results showed that the contaminant extraction rate varied with the LNAPL thickness and submerged pump position. For benzene selected as the contaminant of concern, greater LNAPL extraction rates were achieved when the initial LNAPL thickness was large (>1.5 m) or in aquifers of high permeability (>2.45 × 10-10 m2). Importantly, it was discovered that in highly permeable coarse sand and gravel, the submerged pump ought to be placed within the LNAPL layer, whereas the pump should be placed below the water-NAPL interface in fine to medium sand aquifers. It was also found that an optimal liquid pumping rates exist, beyond which contaminant mass removal rates do not increase. Furthermore, it was found that in aquifers contaminated with thin LNAPL layers, mass transfer modelling that assumes equilibrium between the phases may greatly overestimate the accumulated mass of contaminants removed and, therefore, non-equilibrium modelling should be adopted. Finally, a cost analysis was carried out to compare the costs of remediating a contaminated site with MPE and by an alternative chemical oxidation approach. The MPE technology was found to be more cost effective when the initial thickness of LNAPL was relatively thin. In summary, the numerical model developed in this study is a useful tool for optimizing MPE system design.
Collapse
Affiliation(s)
- Shengqi Qi
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - David O'Connor
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yidong Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Arshadi M, Gesho M, Qin T, Goual L, Piri M. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 230:103599. [PMID: 31932069 DOI: 10.1016/j.jconhyd.2020.103599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Subsurface formations often contain multiple minerals with different wettability characteristics upon contact with nonaqueous-phase liquids (NAPLs). Constitutive relationships between microstructure heterogeneity and NAPL fate and transport in these formations are difficult to predict. Several studies have used pore-scale network models with faithful representations of rock pore space topology to predict macroscopic descriptors of two-phase flow, however wettability is usually considered as a spatially random variable. This study attempts to overcome this limitation by considering more realistic representations of rock mineralogy and wettability in these models. This is especially important for heterogeneous rocks where properties vary at the pore-scale. The work was carried out in two phases. First, pore-fluid occupancy maps during waterflooding were obtained by X-ray microtomography to elucidate the impact of pore wall mineralogy and wettability on water preferential flow paths and NAPL trapping within a heterogeneous aquifer sandstone (Arkose). Then, microtomography images of the rock were used to generate a hybrid pore network model (PNM) that incorporated both pore space topology and pore wall mineralogy. In-situ contact angles (CA) measured on the surface of different minerals were assigned to the network on a pore-by-pore basis to describe the exact wettability distribution of the rock (Pore-by-pore model). The equivalent network was used as input in a quasi-static flow model to simulate waterflooding, and the predictions of residual NAPL saturation and relative permeabilities were compared against their experimental counterparts. To examine the sensitivity of the model to the underlying fluid-solid interactions, we also used traditional methods of wettability characterization in the input data and assigned them randomly to the PNM. Wettability in this case was assessed from macroscale CA distribution of oil droplets on the surface of unpolished Arkose substrates released by spontaneous imbibition of water (Arkose model) and from pendant drop measurements on polished quartz (Quartz model). Our results revealed that the Pore-by-pore model predicted waterflooding with the highest accuracy among all three cases. The Arkose model slightly overestimated NAPL removal whereas the Quartz model failed to predict the experiments. More in-depth analysis of the Pore-by-pore and Arkose models showed that macroscopic transport quantities are less dependent to microstructure heterogeneity if minerals are distributed uniformly across the rock. The predictions herein indicate the importance of incorporating mineralogy and wettability maps to improve the prediction capabilities of PNMs especially in systems with high mineral heterogeneity, where minerals are nonuniformly distributed, or selective fluid-mineral interactions are targeted.
Collapse
Affiliation(s)
- Maziar Arshadi
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA
| | - Masakazu Gesho
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA
| | - Tianzhu Qin
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA
| | - Lamia Goual
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA.
| | - Mohammad Piri
- University of Wyoming, Dept. of Petroleum Engineering, 1000 E. University Ave., Laramie, WY 82071, USA
| |
Collapse
|
15
|
Alfaro Soto MA, Lenhard R, Chang HK, van Genuchten MT. Determination of specific LNAPL volumes in soils having a multimodal pore-size distribution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:576-584. [PMID: 30826639 DOI: 10.1016/j.jenvman.2019.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/16/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
In this paper we present modifications to previously published models for determining the specific volume of non-aqueous phase liquids (LNAPLs) in the subsurface at and near the groundwater table following a spill or leak from the soil surface. The modifications account for porous media having multimodal pore-size distributions as is often the case with tropical soils. Data from the literature are used to show that the use of multimodal pore-size distributions can lead to significantly different subsurface LNAPL specific volume predictions and possible LNAPL recovery rates, compared to when only unimodal pore-size distributions are considered. Differences of up to 200% are possible when the dual-porosity nature of the pore system is ignored, which can yield erroneous estimates of the time needed to remediate LNAPLs from contaminated areas when conventional systems are employed.
Collapse
Affiliation(s)
- Miguel A Alfaro Soto
- Department of Applied Geology and Center for Environmental Studies, São Paulo State University, UNESP, Rio Claro, SP 13506-900, Brazil.
| | | | - Hung K Chang
- Department of Applied Geology and Center for Environmental Studies, São Paulo State University, UNESP, Rio Claro, SP 13506-900, Brazil
| | - Martinus Th van Genuchten
- Department of Applied Geology and Center for Environmental Studies, São Paulo State University, UNESP, Rio Claro, SP 13506-900, Brazil; Department of Nuclear Engineering, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| |
Collapse
|