1
|
Banda MF, Matabane DL, Munyengabe A. A phytoremediation approach for the restoration of coal fly ash polluted sites: A review. Heliyon 2024; 10:e40741. [PMID: 39691195 PMCID: PMC11650309 DOI: 10.1016/j.heliyon.2024.e40741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Coal fly ash (CFA) is a predominant waste by-product of coal combustion which is disposed of in open ash dams that utilize large pieces of land. This waste material is classified as a hazardous substance in South Africa as well as in other countries due to its fine particles that are easily blown to the atmosphere and the unacceptable levels of heavy metals and persistent organic pollutants. Contaminants in CFA can pollute surface and ground water, agricultural sites, soil and therefore pose risks to the health of humans and the environment. More than 500 million tons of CFA is produced yearly and over 200 million tons remain unused globally. The production will continue due to high consumer energy demands, especially in countries with heavy reliance on coal for power generation. Despite a significant progress made on the application of phytoremediation approach for decontamination of polluted sites, there is very limited evidence for its potential in the rehabilitation of CFA dumps. Low organic carbon, microbial activities and availability of nutrients including nitrogen contribute to restricted plant growth in CFA, and therefore converting ash dumps to barren lands devoid of vegetation. Leguminous plant species can fix atmospheric nitrogen through symbiotic association with bacteria. Therefore, their intercropping mixture development can improve the chemistry of the substrate and facilitate nutrients availability to the companion plants. This approach can enhance the performance of phytoremediation and promote sustainable practices. The paper provides an overview of the ongoing burden of CFA disposal and discusses the ecological and economic benefits of using legumes, aromatic and bioenergy plants. We identify knowledge gaps to establishing vegetation in ash dumping sites, and provide insights to encourage continued research that will enhance the applicability of phytoremediation in restoration programs.
Collapse
Affiliation(s)
- Maria Fezile Banda
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| | - Dithobolong Lovia Matabane
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| | - Alexis Munyengabe
- Tshwane University of Technology, Faculty of Science, Department of Chemistry, Pretoria, 0001, Private Bag X680, South Africa
| |
Collapse
|
2
|
Huang M, Cheng J, Zeng B, Cai S. Morphological Enrichment and Environmental Factors Correlation of Heavy Metals in Dominant Plants in Typical Manganese Ore Areas in Guizhou, China. ENVIRONMENTAL MANAGEMENT 2024; 74:942-957. [PMID: 39133339 DOI: 10.1007/s00267-024-02030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Bioavailable heavy metal and their efficient phytoremediation in mining areas have major implications for environmental and human health. In this study, we investigated 12 dominant plants in a typical Mn ore area of Zunyi, Guizhou Province, China, to determine the heavy metal contents, morphologies, and environmental factors affecting Mn, Cd, Pb, Cu, Zn, and Cr in the plant parts and rhizosphere soil. The bioavailabilities and degrees of metals were evaluated using the ratios of the secondary to primary phase distributions and potential ecological risk indices. Principal component analysis, cluster analysis, positive matrix factorisation modelling, and redundancy analysis were used to trace the origins and correlations among the metals. The results indicate that the bioavailabilities were the highest for Mn and Cd in the study area, and all of the target heavy metals had bioavailabilities above the moderate ecological harm level. Statistical modelling indicates that there are four main pollution sources: mining, smelting, processing operations, and atmospheric deposition. The dominant plants had high heavy metal enrichments, bioconcentration factors, and translocation factors for Mn, Cu, Cr, Cd, and Zn. The redundancy analysis indicates that soil total N, total P, and pH affect metal absorption and distributions in Compositae and non-Compositae plants in low-N, low-P, and slightly alkaline mining environments. This study provides a feasible basis for the screening of heavy metal enrichment plants and the improvement of remediation technology in manganese ore area under the extreme environment of poor nutrition.
Collapse
Affiliation(s)
- Mingqin Huang
- College of Resources and Environment, Zunyi Normal University, Guizhou, China
| | - Junwei Cheng
- College of Resources and Environment, Zunyi Normal University, Guizhou, China
| | - Boping Zeng
- College of Resources and Environment, Zunyi Normal University, Guizhou, China
| | - Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Guizhou, China.
| |
Collapse
|
3
|
Diallo A, Hasnaoui SE, Dallahi Y, Smouni A, Fahr M. Native plant species growing on the abandoned Zaida lead/zinc mine site in Morocco: Phytoremediation potential for biomonitoring perspective. PLoS One 2024; 19:e0305053. [PMID: 38924033 PMCID: PMC11207124 DOI: 10.1371/journal.pone.0305053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.
Collapse
Affiliation(s)
- Alassane Diallo
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
- Centre d’Excellence Africain Mines et Environnement Minier, Institut National Polytechnique Félix HOUPHOUET BOIGNY, Yamoussoukro, Côte d’Ivoire
| | - Said El Hasnaoui
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Youssef Dallahi
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Abdelaziz Smouni
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Mouna Fahr
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| |
Collapse
|
4
|
Li J, Xu X, Song L, Na M, Xu S, Zhang J, Huang Y, Li X, Zheng X, Zhou J. Investigating the Mechanism of Cadmium-Tolerant Bacterium Cellulosimicrobium and Ryegrass Combined Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:1657. [PMID: 38931089 PMCID: PMC11207253 DOI: 10.3390/plants13121657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cadmium (Cd) pollution has been rapidly increasing due to the global rise in industries. Cd not only harms the ecological environment but also endangers human health through the food chain and drinking water. Therefore, the remediation of Cd-polluted soil is an imminent issue. In this work, ryegrass and a strain of Cd-tolerant bacterium were used to investigate the impact of inoculated bacteria on the physiology and biochemistry of ryegrass and the Cd enrichment of ryegrass in soil contaminated with different concentrations of Cd (4 and 20 mg/kg). The results showed that chlorophyll content increased by 24.7% and 41.0%, while peroxidase activity decreased by 56.7% and 3.9%. In addition, ascorbic acid content increased by 16.7% and 6.3%, whereas glutathione content decreased by 54.2% and 6.9%. The total Cd concentration in ryegrass increased by 21.5% and 10.3%, and the soil's residual Cd decreased by 86.0% and 44.1%. Thus, the inoculation of Cd-tolerant bacteria can improve the antioxidant stress ability of ryegrass in Cd-contaminated soil and change the soil's Cd form. As a result, the Cd enrichment in under-ground and above-ground parts of ryegrass, as well as the biomass of ryegrass, is increased, and the ability of ryegrass to remediate Cd-contaminated soil is significantly improved.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Xiaoyang Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Lanping Song
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Meng Na
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Shangqi Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Jie Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Yongjie Huang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihai Zhou
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (J.L.); (X.X.); (L.S.); (M.N.); (S.X.); (J.Z.); (Y.H.)
| |
Collapse
|
5
|
El-Tohory S, Zeng W, Huang J, Moussa MG, Dong L, Ismael MA, Khalifa O, Salama MA, Hekal MA, Basyouny MAE, Zhran M, Wu J. Effect of intercropping and biochar amendments on lead removal capacity by Corchorus olitorius and Zea mays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42277-42294. [PMID: 38865046 DOI: 10.1007/s11356-024-33849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/25/2024] [Indexed: 06/13/2024]
Abstract
Intercropping is a sustainable strategy recognized for boosting crop production and mitigating heavy metal toxicity in contaminated soils. This study investigates the effects of biochar amendments on Pb-contaminated soil, utilizing monocropping and intercropping techniques with C. olitorius and Z. mays. The research assesses Pb removal capacity, nutrient uptake, antioxidant enzymes, and soil Pb fractionation. In monocropping, the phytoremediation ratio for C. olitorius increased from 16.67 to 27.33%, while in intercropping, it rose from 19.00 to 28.33% with biochar amendments. Similarly, Z. mays exhibited an increased phytoremediation ratio from 53.33 to 74.67% in monocropping and from 63.00 to 78.67% in intercropping with biochar amendments. Intercropping significantly increased the peroxidase (POD) activity in Z. mays roots by 22.53%, and there were notable increases in shoot POD of C. olitorius (11.54%) and Z. mays (16.20%) with biochar application. CAT showed consistent improvements, increasing by 37.52% in C. olitorius roots and 74.49% in Z. mays roots with biochar. Biochar amendments significantly increased N content in soil under sole cropping of Z. mays and intercropping systems. In contrast, Cu content increased by 56.34%, 59.05%, and 79.80% in monocropping (C. olitorius and Z. mays) and intercropping systems, respectively. This suggests that biochar enhances nutrient availability, improving phytoremediation efficacy in Pb-contaminated soil. Phyto availability of trace metals (Zn, Mn, Cu, and Fe) exhibited higher levels with biochar amendments than those without. The findings indicate that intercropping and biochar amendments elevate antioxidant enzyme levels, reducing reactive oxygen species and mitigating Pb toxicity effects. This approach improves phytoremediation efficiency and holds promise for soil pollution remediation while enhancing nutrient content and crop quality in Pb-contaminated soil.
Collapse
Affiliation(s)
- Shaimaa El-Tohory
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Wenzhi Zeng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China.
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Mohamed G Moussa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
- International Center for Biosaline Agriculture, ICBA, 14660, Dubai, United Arab Emirates
| | - Liming Dong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Marwa A Ismael
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Omar Khalifa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed A Salama
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed A Hekal
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed A E Basyouny
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mostafa Zhran
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
6
|
Barathi S, Lee J, Venkatesan R, Vetcher AA. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3816. [PMID: 38005713 PMCID: PMC10675783 DOI: 10.3390/plants12223816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Rising waste construction, agricultural actions, and manufacturing sewages all contribute to heavy metal accumulation in water resources. Humans consume heavy metals-contaminated substances to make sustenance, which equally ends up in the food circle. Cleaning of these vital properties, along with the prevention of new pollution, has long been required to evade negative strength consequences. Most wastewater treatment techniques are widely acknowledged to be costly and out of the grasp of governments and small pollution mitigation businesses. Utilizing hyper-accumulator plants that are extremely resilient to heavy metals in the environment/soil, phytoremediation is a practical and promising method for eliminating heavy metals from contaminated environments. This method extracts, degrades, or detoxifies harmful metals using green plants. The three phytoremediation techniques of phytostabilization, phytoextraction, and phytovolatilization have been used extensively for soil remediation. Regarding their ability to be used on a wide scale, conventional phytoremediation methods have significant limitations. Hence, biotechnological attempts to change plants for heavy metal phytoremediation methods are extensively investigated in order to increase plant effectiveness and possible use of improved phytoremediation approaches in the country of India. This review focuses on the advances and significance of phytoremediation accompanied by the removal of various harmful heavy metal contaminants. Similarly, sources, heavy metals status in India, impacts on nature and human health, and variables influencing the phytoremediation of heavy metals have all been covered.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
7
|
Zanin Lima J, Monici Raimondi Nauerth I, Ferreira da Silva E, José Pejon O, Guimarães Silvestre Rodrigues V. Competitive sorption and desorption of cadmium, lead, and zinc onto peat, compost, and biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118515. [PMID: 37418925 DOI: 10.1016/j.jenvman.2023.118515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Soil and water contamination by potentially toxic metals (PTMs) has exerted adverse environmental impacts, which justifies studies of promising remediation alternatives. This article investigated the competitive sorption of cadmium (Cd), lead (Pb), and zinc (Zn) onto peat, compost, and biochar derived from the organic fraction of municipal solid waste (OFMSW), but its main innovation was the post-sorption assessment. The effects of contact time on competition between contaminants were systematically analyzed by batch experiments and the effectiveness of the sorption process was evaluated in desorption tests (H2O, HCl, NaOH, and NaCl) and sequential extraction. Kinetic data were well-fitted to pseudo-first-order (PFO) and pseudo-second-order (PSO) models and the intra-particle diffusion model revealed the existence of multiple linear regions, indicating the sorption process was controlled by a multi-step mechanism. The sorption capacities followed a biochar > compost > peat order, with biochar retaining more than 99% of Cd, Pb, and Zn in all samples. The general order of desorption percentage was peat > compost > biochar, with a below 0.60% biochar release, suggesting the importance of chemical processes. HCl solution (more acid pH) showed the highest release of previously sorbed contaminants and, therefore, can be employed for the reuse of sorbents (sorption/desorption cycles). The only exception was Pb desorption on biochar, with maximum release in NaOH solution. A negative Pearson correlation with F1 (acid-soluble/exchangeable fraction) for Cd and Zn and a positive one with the other steps were reported. Pb exhibited an opposite behavior, showing the highest sorption performances and the lowest desorption rates for all sorbents, justified by positive correlations with F4 (residual fraction) and negative ones with desorption. The findings suggest the evaluated sorbents, especially compost and biochar, can be effective materials in the simultaneous sorption of Cd, Pb, and Zn in wastewater, as well as an amendment for PTMs immobilization in contaminated soils.
Collapse
Affiliation(s)
- Jacqueline Zanin Lima
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil; GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Isabela Monici Raimondi Nauerth
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil
| | - Eduardo Ferreira da Silva
- GeoBioTec, Department of Geoscience, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Osni José Pejon
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil
| | - Valéria Guimarães Silvestre Rodrigues
- Department of Geotechnical Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São Carlense Ave, São Carlos, 13566-590, Brazil.
| |
Collapse
|
8
|
Song L, Xu X, Zheng Y, Hong W, Li X, Ai Y, Wang Y, Zhang Z, Chen H, Huang Y, Zhang J, Zhou J. Dynamic mechanisms of cadmium accumulation and detoxification by Lolium perenne grown in soil inoculated with the cadmium-tolerant bacterium strain Cdq4-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162314. [PMID: 36805060 DOI: 10.1016/j.scitotenv.2023.162314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination is a serious threat to food security and human health. The cost-effective in situ method of remediating Cd-contaminated soil uses Cd-tolerant microorganisms and Cd-enriching plants. The present study investigated the dynamic effects of inoculating soil with a Cd-tolerant bacteria strain Cdq4-2 (Enterococcus sp.) on the physiological and biochemical properties of perennial ryegrass Lolium perenne. The combined effects of remediating Cd-contaminated soil with this plant and these bacteria were also studied. An experiment was used to compare three treatments of L. perenne crops: 1) CK (control soil without Cd), 2) C (20 mg/kg Cd-contaminated soil), and 3) CB (20 mg/kg Cd-contaminated soil inoculated with bacteria Cdq4-2). The results show that compared with treatment C, the aboveground biomass, underground biomass, and total biomass of CB were 46.83-69.31%, 131.76-462.79%, and 62.65-101.53% greater, respectively. The superoxide dismutase activity of CB was 17.62-54.63% lower, while its peroxidase activity was 67.49-146.51% higher. The malondialdehyde concentration in CB was 30.40-40.24% more significant, the ascorbic acid concentration was 6.20-188.22% higher, and its glutathione concentration was 16.25-63.63% lower. The Cd concentrations of aboveground parts of a plant in treatment CB were 18.55% and 30.53% higher than those of C at days 20 and 40, respectively, while that of underground parts was 24.25% higher on day 40. The bioconcentration factors of aboveground and underground parts were higher in treatment CB on day 40. The inoculation of Cd-contaminated soils with bacteria Cdq4-2 promoted growth in L. perenne, improved its antioxidant ability, and promoted the absorption, translocation, and accumulation of Cd. Hence, it improved the effectiveness of L. perenne in remediating Cd-contaminated soils.
Collapse
Affiliation(s)
- Lanping Song
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoyang Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yuanyuan Zheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wanyue Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yanmei Ai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yang Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Zekun Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Hong Chen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yongjie Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jie Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Yang C, Xia L, Zeng Y, Chen Y, Zhang S. Hexaploid Salix rehderiana is more suitable for remediating lead contamination than diploids, especially male plants. CHEMOSPHERE 2023; 333:138902. [PMID: 37182717 DOI: 10.1016/j.chemosphere.2023.138902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Willows are promising candidates for phytoremediation, but the lead (Pb) phytoremediation potential of different willow ploidy and sex has not yet been exploited. In this study, the Pb uptake, translocation and detoxification capacities of hexaploid and diploid, female and male Salix rehderiana were investigated. The results showed that Pb treatment inhibited biomass accumulation and gas exchange, caused ultrastructural and oxidative damage, and induced antioxidant, phytohormonal and transcriptional regulation in S. rehderiana. Absorbed Pb was mainly accumulated in the roots with restricted root-to-shoot transport. Despite lower biomass, greater transpiration, phytohormonal and transcriptional regulation indicated that hexaploid S. rehderiana had higher tissue Pb concentration, total accumulated Pb amount (4.39 mg, 6.19 mg, 6.60 mg and 10.83 mg in diploid and hexaploid females and males, respectively) as well as bioconcentration factors and translocation factors (0.412, 0.593, 0.921 and 1.320 for bioconcentration factors in roots, and 0.029, 0.032, 0.035 and 0.047 for translocation factors in diploid and hexaploid females and males, respectively) than diploids. Higher soil urease and acid phosphatase activities also favored hexaploids to use more available N and P than diploids in Pb-contaminated soils. Additionally, hexaploid S. rehderiana had stronger antioxidant, phytohormonal and transcriptional responses, and displayed less morphological and ultrastructural damage than diploids after Pb treatment, suggesting that hexaploids have greater Pb uptake, translocation and detoxification capacities than diploids. Moreover, S. rehderiana males had greater Pb uptake and translocation abilities, as well as stronger antioxidant, phytohormonal, and transcriptional regulation mediated Pb detoxification capacities than females. Therefore, hexaploid S. rehderiana are superior to diploids, and males are better than females in Pb phytoremediation. This study provides novel and valuable insights for selecting better willow materials to mitigate Pb contamination.
Collapse
Affiliation(s)
- Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
10
|
Thouin H, Norini MP, Battaglia-Brunet F, Gautret P, Crampon M, Le Forestier L. Temporal evolution of surface and sub-surface geochemistry and microbial communities of Pb-rich mine tailings during phytostabilization: A one-year pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115538. [PMID: 35772273 DOI: 10.1016/j.jenvman.2022.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Old mine waste repositories can present health and/or environmental issues linked to their erosion, inducing dissemination of metals and metalloids in air and water that can be attenuated through phytostabilization. Here, the effect of this widespread phytomanagement option on the biogeochemistry of a Pb-rich mine waste was evaluated with a laboratory pilot-scale experiment giving access to the non-saturated and saturated zones below the rhizosphere compartment. Amendment of the tailings surface with biochar, manure and iron-oxide-rich ochre promoted growth of the seeded Agrostis capillaris plants. These events were accompanied by an increase of pH and a decrease of Pb concentration in pore water of the surface layer, and by a transient increase of Pb, Zn, and Ba concentrations in the deeper saturated levels. Macroscopic and microscopic observations (SEM) suggest that Pb was immobilized in A. capillaris rhizosphere through mechanical entrapment of tailing particles. Microbial taxonomic and metabolic diversities increased in the amended phytostabilized surface levels, with a rise of the proportion of heterotrophic micro-organisms. Below the surface, a transient modification of microbial communities was observed in the non-saturated and saturated levels, however 11 months after seeding, the prokaryotic community of the deepest saturated zone was close to that of the initial tailings. pH and water saturation seemed to be the main parameters driving prokaryotic communities' structures. Results obtained at pilot-scale will help to precisely evaluate the impacts of phytostabilization on the temporal evolution of reactions driving the fate of pollutants inside the tailings dumps.
Collapse
Affiliation(s)
| | - Marie-Paule Norini
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Fabienne Battaglia-Brunet
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Pascale Gautret
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| | | | - Lydie Le Forestier
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| |
Collapse
|
11
|
Wu Y, Qi L, Wang B, Medley P, Drake J, Vernon J, Ibeanusi V, Chen G. Assess long-term As, Pb and Cr contamination and uptake by Eriocaulon decangulare in the Apalachicola National Forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156040. [PMID: 35597343 DOI: 10.1016/j.scitotenv.2022.156040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Phytoremediation is an effective remediation process for heavy metal contamination. The primary zone of phytoremediation is the rhizosphere where the plants uptake the heavy metals from the soil matrix. The bioavailability of the contaminants in the rhizosphere is affected by the physical, chemical, and biological conditions of the rhizosphere. In the study area of the Apalachicola National Forest, the concentrations of As, Pb and Cr in the bulk soil (n = 20) were 515.81, 220.77, and 2.02 mg/kg soil, respectively. Using a sequential extraction method, the bioavailability of heavy metals in the bulk soil (S-NR) and rhizosphere soil (S-R) was characterized. The results showed that the bioavailability of the three heavy metals had the order of Cr > Pb > As for S-NR and Pb > As > Cr for S-R. The bioavailability of these metals was affected by the nature of the heavy metals and the soil physicochemical properties. Native plant Eriocaulon decangulare could uptake a large number of heavy metals from the natural soil, demonstrating great phytoremediation potential for metal contamination. Energy Dispersive Spectroscopy (EDS) mapping successfully located the dominant accumulation of heavy metals in aerial parts of E. decangulare. E. decangulare was also found to be highly selective and Pb and As were both extensively accumulated in the shoots and roots. Cr was significantly immobilized in the rhizosphere soil, and also accumulated in the root of E. decangulare. This study not only correlated the phytoremediation potential with heavy metal bioavailability and soil physicochemical properties, but also demonstrated the important role of the nature of heavy metals played during the phytoremediation.
Collapse
Affiliation(s)
- Yudi Wu
- College of Engineering and Applied Sciences, University at Albany, State University of New York, Albany, NY 12222, United States of America.
| | - Lin Qi
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America
| | - Boya Wang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America
| | - Paul Medley
- Center for Spatial Ecology and Restoration, Florida A&M University, Tallahassee, FL 32306, United States of America
| | - Jason Drake
- Center for Spatial Ecology and Restoration, Florida A&M University, Tallahassee, FL 32306, United States of America
| | - Jordan Vernon
- Center for Spatial Ecology and Restoration, Florida A&M University, Tallahassee, FL 32306, United States of America
| | - Victor Ibeanusi
- Center for Spatial Ecology and Restoration, Florida A&M University, Tallahassee, FL 32306, United States of America
| | - Gang Chen
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States of America
| |
Collapse
|
12
|
Xu DM, Fu RB. The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129368. [PMID: 35897171 DOI: 10.1016/j.jhazmat.2022.129368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Since lager quantities of the zinc (Zn) smelting slags were traditionally dumped at the indigenous Zn smelting sites, the release characterization of potentially toxic elements (PTEs) from the Zn smelting slags under various environmental conditions were of great significance for an environmental risk analysis. The acidification of the Zn smelting slags to pH= 4 and 6 would result in the leaching concentrations of Cd and Mn exceeding the fourth-class standard of surface water quality standard in China (GB3838-2002). Notably, most metals exhibited an amphoteric leaching pattern, where the highest leached concentrations of As, Cd, Cu, Mn, Pb, and Zn were 4.15, 4.21, 140.0, 78.1, 156.9 and 477.0 mg/L, respectively. In addition, the highest release of toxic metals within 96 h reached 0.17 % of As, 3.50 % of Cd, 2.77 % of Cu, 6.92 % of Mn, 0.13 % of Pb, and 2.57 % of Zn, respectively. The combined results of various characterization techniques suggested that the PTEs remobilization effected by rhizosphere-like organic acids were mainly controlled by the precipitation of newly formed Fe, Mn and Al (hydr) oxides and the complexation of organic ligands. The present study results could provide valuable insights into the long-term leaching behaviors of PTEs from the Zn smelting slags to reduce ecological hazard.
Collapse
Affiliation(s)
- Da-Mao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rong-Bing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. BIOLOGY 2022; 11:biology11050676. [PMID: 35625404 PMCID: PMC9138774 DOI: 10.3390/biology11050676] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The legume–rhizobium symbiosis is one of the most beneficial interactions with high importance in agriculture, as it delivers nitrogen to plants and soil, thereby enhancing plant growth. Currently, this symbiosis is increasingly being exploited in phytoremediation of metal contaminated soil to improve soil fertility and simultaneously metal extraction or stabilization. Rhizobia increase phytoremediation directly by nitrogen fixation, protection of plants from pathogens, and production of plant growth-promoting factors and phytohormones. Abstract With the increasing industrial activity of the growing human population, the accumulation of various contaminants in soil, including heavy metals, has increased rapidly. Heavy metals as non-biodegradable elements persist in the soil environment and may pollute crop plants, further accumulating in the human body causing serious conditions. Hence, phytoremediation of land contamination as an environmental restoration technology is desirable for both human health and broad-sense ecology. Legumes (Fabaceae), which play a special role in nitrogen cycling, are dominant plants in contaminated areas. Therefore, the use of legumes and associated nitrogen-fixing rhizobia to reduce the concentrations or toxic effects of contaminants in the soil is environmentally friendly and becomes a promising strategy for phytoremediation and phytostabilization. Rhizobia, which have such plant growth-promoting (PGP) features as phosphorus solubilization, phytohormone synthesis, siderophore release, production of beneficial compounds for plants, and most of all nitrogen fixation, may promote legume growth while diminishing metal toxicity. The aim of the present review is to provide a comprehensive description of the main effects of metal contaminants in nitrogen-fixing leguminous plants and the benefits of using the legume–rhizobium symbiosis with both wild-type and genetically modified plants and bacteria to enhance an efficient recovery of contaminated lands.
Collapse
|
14
|
Kińska K, Cruzado-Tafur E, Parailloux M, Torró L, Lobinski R, Szpunar J. Speciation of metals in indigenous plants growing in post-mining areas: Dihydroxynicotianamine identified as the most abundant Cu and Zn ligand in Hypericum laricifolium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151090. [PMID: 34688754 DOI: 10.1016/j.scitotenv.2021.151090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ag, As, Cu, Pb and Zn were found to be the principal metallic contaminants of a post-mining area of Peru (Hualgayoc, Cajamarca). Study of metal distribution amongst roots, stems, and leaves of four indigenous hypertolerant plant species, Arenaria digyna, Puya sp., Hypericum laricifolium, Nicotiana thyrsiflora indicated significant translocation of Zn (0.6 < TF ≤ 10.0) and Cu (0.4 < TF ≤ 6.5) into aerial plant organs and substantial water-extractable fraction (20-60%) of these metals, except for A. digyna (root and stems). A study of the metal speciation by ultrahigh-performance size-exclusion (fast-SEC) and hydrophilic ion interaction (HILIC) liquid chromatography with dual ICP (inductively coupled plasma) and electrospray (ESI) Orbitrap MS detection revealed the presence of nicotianamine and deoxymugineic acid copper and zinc complexes in roots, stem and leaves of N. thyrsiflora and Puya sp., and nicotianamine alone in A. digyna. A previously unreported compound, dihydroxy-nicotianamine was identified as the most abundant Cu and Zn ligand in H. laricifolium. The presence of arsenobetaine and an arsenosugar was confirmed by ESI MS. Ag and Pb were hardly translocated to leaves and were found as high molecular species; one of the Pb-containing species co-eluted in fast-SEC-ICP MS with rhamnogalacturonan-II-Pb complex commonly found in in the walls of plants.
Collapse
Affiliation(s)
- Katarzyna Kińska
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France.
| | - Edith Cruzado-Tafur
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France; Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 180, San Miguel, Lima 15088, Peru
| | - Maroussia Parailloux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| | - Lisard Torró
- Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 180, San Miguel, Lima 15088, Peru
| | - Ryszard Lobinski
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France; Department of Analytical Chemistry, Warsaw Technical University, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, Pau, France
| |
Collapse
|
15
|
Junpradit C, Thooppeng P, Duangmal K, Prapagdee B. Influence of cadmium-resistant Streptomycetes on plant growth and cadmium uptake by Chlorophytum comosum (Thunb.) Jacques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39398-39408. [PMID: 33759092 DOI: 10.1007/s11356-021-13527-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
This work aims to explore the role of cadmium-resistant actinomycetes on promoting plant growth and cadmium uptake in Chlorophytum comosum (Thunb.) Jacques, a spider plant. Actinomycetes isolated from the plant roots in peat swamp forests were screened for their cadmium resistance and the production of indole-3-acetic acid (IAA) and siderophores. The results found that K5PN1 and 11-10SHTh produced high levels of IAA and siderophores, respectively. K5PN1 and 11-10SHTh were identified to be Streptomyces rapamycinicus and Streptomyces cyaneus, respectively. Both strains were able to remove cadmium from aqueous solution and survive under cadmium stress in contaminated soil. The results of pot experiments found that the selected Streptomyces inoculation increased the root and shoot biomass and cadmium accumulation in the root and shoot of C. comosum planted in a cadmium-contaminated soil. The highest cadmium accumulation and translocation ability of cadmium from the root to shoot was found in C. comosum with S. rapamycinicus inoculation. In addition, plant with S. cyaneus inoculation had the highest phytoextraction coefficient and bioaccumulation factor. Our findings concluded that S. rapamycinicus and S. cyaneus stimulated the growth and cadmium uptake in C. comosum, suggesting a combined approach using the selected Streptomyces and C. comosum for phytoremediation of cadmium-polluted soil.
Collapse
Affiliation(s)
- Chotinan Junpradit
- Laboratory of Environmental Biotechnology, Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Patsaraporn Thooppeng
- Laboratory of Environmental Biotechnology, Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Kannika Duangmal
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Benjaphorn Prapagdee
- Laboratory of Environmental Biotechnology, Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
16
|
Cruzado-Tafur E, Bierla K, Torró L, Szpunar J. Accumulation of As, Ag, Cd, Cu, Pb, and Zn by Native Plants Growing in Soils Contaminated by Mining Environmental Liabilities in the Peruvian Andes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020241. [PMID: 33513684 PMCID: PMC7922771 DOI: 10.3390/plants10020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
The capability of native plant species grown in polluted post-mining soils to accumulate metals was evaluated in view of their possible suitability for phytoremediation. The study areas included two environmental liabilities in the Cajamarca region in the Peruvian Andes. The content of As, Ag, Cd, Cu, Pb, and Zn was determined in individual plant organs and correlated with soil characteristics. The degree of the pollution depended on the metal with results ranging from uncontaminated (Cd) to moderately (Zn), strongly (As, Cu), and extremely contaminated (Pb, Ag) soils. The metals were mainly present in the fractions with limited metal mobility. The bioaccumulation of the metals in plants as well the translocation into overground organs was determined. Out of the 21 plants evaluated, Pernettya prostrata and Gaultheria glomerate were suitable for Zn, and Gaultheria glomerata and Festuca sp. for Cd, phytostabilization. The native species applicable for Cd phytoremediation were Ageratina glechonophylla, Bejaria sp., whereas Pernettya prostrata Achyrocline alata,Ageratina fastigiate, Baccharis alnifolia, Calceolaria tetragona, Arenaria digyna, Hypericum laricifolium, Brachyotum radula, and Nicotiana thyrsiflora were suitable for both Cd and Zn. None of the studied plants appeared to be suitable for phytoremediation of Pb, Cu, As and Ag.
Collapse
Affiliation(s)
- Edith Cruzado-Tafur
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France; (E.C.-T.); (K.B.)
- Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 1801, San Miguel, Lima 15088, Peru;
| | - Katarzyna Bierla
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France; (E.C.-T.); (K.B.)
| | - Lisard Torró
- Geological Engineering Program, Faculty of Sciences and Engineering, Pontifical Catholic University of Peru (PUCP), Av. Universitaria 1801, San Miguel, Lima 15088, Peru;
| | - Joanna Szpunar
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM UMR 5254, Hélioparc, 64053 Pau, France; (E.C.-T.); (K.B.)
| |
Collapse
|
17
|
Bioremediation Methods for the Recovery of Lead-Contaminated Soils: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, the pollution of soils by heavy metals is a problem of paramount relevance and requires the development of proper remediation techniques. In particular, lead is a frequently detected soil contaminant that poses adverse effects to the environment and human health. In this review, we provide an overview of the bioremediation treatments promoted by plants (phytoremediation), fungi, or bacteria that could be applied to areas polluted by lead. These restoration processes have the advantage of being environmentally friendly and cost-effective solutions that exploit plants to immobilize and extract contaminants from soil and water, and fungi and bacteria to degrade them. Phytoremediation is an extensively studied and mature practice, with many in-the-field applications where numerous plant species have been employed. In contrast, bioremediation processes promoted by fungi and bacteria are very promising but, up to now, studies have been mostly performed at a laboratory scale with only a few implementations in real-world situations; therefore, further research is needed.
Collapse
|
18
|
Gonçalves AC, Schwantes D, Braga de Sousa RF, Benetoli da Silva TR, Guimarães VF, Campagnolo MA, Soares de Vasconcelos E, Zimmermann J. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110342. [PMID: 32250818 DOI: 10.1016/j.jenvman.2020.110342] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/01/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
The search for vegetal species regarding effectiveness in the phytoremediation of soils is of great importance, mainly in function of the great environmental problems, such as soil contamination with heavy metals, the necessity of producing more food, among others that mankind face today. This work aimed (i) to evaluate phytoremediation capacity of Crambe abyssinica Hochst and its growth in soil artificially contaminated with Cd and Pb, and (ii) to evaluate the possible impacts of crambe cultivation in contaminated soil conditions, in order to evaluate, to test, and to question the Brazilian CONAMA 420, providing important information that can be useful for governmental and environmental purposes. Two simultaneous experiments were developed, one for each metal. The soils were contaminated with salts of CdCl2 and PbCl2H2O in five doses based on the investigation values (IV) of CONAMA Resolution 420, resulting in 0; 1.5; 3; 9 and 30 mg kg-1 for Cd and 33; 90; 180; 540 and 1800 mg kg-1 for Pb. Gaseous exchange, development, nutritional composition and production of plant components, as well as phytoavailability of metals, were evaluated. The contamination with metals reduced photosynthesis, increased breathing as well as leading to a negative effect on the mineral nutrition and productivity in general; Plants cultivated in soil with Cd presented higher phytoavailability when compared to those cultivated in the Pb conditions, being found metals in all parts of the crambe plants from 1.5 mg kg- 1 of Cd in the soil; and Pb was retained only in roots, not being translocated in the plant. Cd showed higher phytoavailability, being found in all parts of the plant and Pb was retained only in the roots. Cd showed a higher phytoavailability when compared to Pb, also being found in all parts of crambe plants from dose 1.5 mg kg-1 of Cd in soil, which is an environmental problem, since in these concentrations the cultivation of crops is allowed by Brazilian legislation CONAMA 420.
Collapse
Affiliation(s)
- Affonso Celso Gonçalves
- Universidade Estadual do Oeste do Paraná (UNIOESTE), CNPq Scientific Productivity Fellowship, Pernambuco Street, 1777 - Centro, Marechal Cândido Rondon, State of Paraná, 85960-000, Brazil.
| | - Daniel Schwantes
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ing. Forestal, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Macul, Región Metropolitana, Chile.
| | - Ricardo Felipe Braga de Sousa
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Pernambuco Street, 1777 - Centro, Marechal Cândido Rondon, State of Paraná, 85960-000, Brazil.
| | - Tiago Roque Benetoli da Silva
- Universidade Estadual de Maringá (UEM), CNPq Scientific Productivity Fellowship, Av. Ângelo Moreira da Fonseca, 1800 - Parque Danielle, Umuarama, State of Paraná, 87506-370, Brazil.
| | - Vandeir Francisco Guimarães
- Universidade Estadual do Oeste do Paraná (UNIOESTE), CNPq Scientific Productivity Fellowship, Pernambuco Street, 1777 - Centro, Marechal Cândido Rondon, State of Paraná, 85960-000, Brazil.
| | - Marcelo Angelo Campagnolo
- Educational College of Medianeira (UDC-Medianeira), Rio Branco Street, 1820, Centro, Medianeira, State of Paraná, 85884-000, Brazil.
| | - Edmar Soares de Vasconcelos
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Pernambuco Street, 1777 - Centro, Marechal Cândido Rondon, State of Paraná, 85960-000, Brazil
| | - Juliano Zimmermann
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Pernambuco Street, 1777 - Centro, Marechal Cândido Rondon, State of Paraná, 85960-000, Brazil.
| |
Collapse
|
19
|
Eid EM, Galal TM, Shaltout KH, El-Sheikh MA, Asaeda T, Alatar AA, Alfarhan AH, Alharthi A, Alshehri AMA, Picó Y, Barcelo D. Biomonitoring potential of the native aquatic plant Typha domingensis by predicting trace metals accumulation in the Egyptian Lake Burullus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136603. [PMID: 31982738 DOI: 10.1016/j.scitotenv.2020.136603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
The ability of the native emergent macrophytes Typha domingensis for monitoring pollution with trace metals in Egyptian Lake Burullus was investigated through developing regression models for predicting their concentrations in the plant tissues. Plant samples (above-ground shoot and below-ground root and rhizome) as well as sediment samples were collected monthly during one growing season and analyzed. The association of trace metals concentration with several sediment characteristics (pH, organic matter, clay and silt) was also studied using the simple linear correlation coefficient (r). The concentration of some trace metals was significantly proportional to its values in the sediment such as Cd in the shoot, rhizome and root, Fe in the rhizome, and Ag in the root. There was positive relationship between the bioaccumulation factor (BAF) of Ag, Cd, Fe, Pb and Zn and sediment pH, organic matter and clay content. The developed regression models were significantly valid with high model efficiency and coefficient of determination, and low mean normalized average error. Trace metals were accumulated in the below-ground root and rhizome rather than in the shoot. Only Ag, Co and Ni provided bioaccumulation factor (BAF) < 1, while Ag was the only trace metal that could be transferred to some extend from the root to the rhizome and from there to the shoot [translocation factor (TF) 2.55 and 1.15, respectively]. Typha domingensis in Lake Burullus could be regarded as a bioindicator of trace metals pollution, and a good candidate as phytoremediator for Ag. The information on the phytoremediation capacity of T. domingensis certainly helps to solve contamination problems at Egyptian Lake Burullus region using this native plant.
Collapse
Affiliation(s)
- Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, Abha 61321, P.O. Box 9004, Saudi Arabia; Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; Botany Department, Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh 33516, Egypt.
| | - Tarek M Galal
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Kamal H Shaltout
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed A El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia; Department of Botany, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Takashi Asaeda
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan; Hydro Technology Institute, Shiroyama Trust Tower 31F, 4-3-1 Toranomon, MInato-ku, Tokyo, Japan; Research and Development Center, Nippon Koei, 2304 Inarihara, Tsukuba, Ibaraki, Japan
| | - Abdulrahman A Alatar
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed H Alfarhan
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Awad Alharthi
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
| | - Ali M A Alshehri
- Biology Department, College of Science, King Khalid University, Abha 61321, P.O. Box 9004, Saudi Arabia
| | - Yolanda Picó
- Environmental and Food Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre CIDE (CSIC-UV-GV), Moncada-Naquera Road km 4.5, 46113 Moncada, Valencia, Spain
| | - Damia Barcelo
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia; Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
| |
Collapse
|
20
|
Saleem MH, Kamran M, Zhou Y, Parveen A, Rehman M, Ahmar S, Malik Z, Mustafa A, Ahmad Anjum RM, Wang B, Liu L. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 257:109994. [PMID: 31868646 DOI: 10.1016/j.jenvman.2019.109994] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 05/06/2023]
Abstract
Flax (Linum usitatissimum L.) is one of the oldest predominant industrial crops grown for seed, oil and fiber. The present study was executed to evaluate the morpho-physiological traits, biochemical responses, gas exchange parameters and phytoextraction potential of flax raised in differentially copper (Cu) spiked soil viz (0, 200, 400 and 600 mg Cu kg-1 soil) under greenhouse pot experiment. The results revealed that flax plants were able to grow up to 400 mg kg-1 Cu level without showing significant growth inhabitation while, further inference of Cu (600 mg kg-1) in the soil prominently inhibited flax growth and biomass accumulation. Compared to the control, contents of proline and malondialdehyde (MDA) were increased by 160.0% and 754.1% accordingly, at 600 mg Cu kg-1 soil level. The Cu-induced oxidative stress was minimized by the enhanced activities of superoxide dismutase (SOD) by 189.2% and guaiacol peroxidase (POD) by 300.8% in the leaves of flax at 600 mg Cu kg-1 soil level, compared to the untreated control. The plant Cu concentration was determined at 35, 70, 105 and 140 days after sowing (DAS) and results depicted that 16.9 times higher Cu concentration was accumulated in flax roots while little (14.9 times) was transported to the shoots at early stage of growth, i.e. 35 DAS. While at 140 DAS, Cu was highly (21.7 times) transported to the shoots while, only 12.3 times Cu was accumulated in the roots at 600 mg Cu kg-1 soil level, compared to control. Meanwhile, Cu uptake by flax was boosted up to 253 mg kg-1 from the soil and thereby extracted 43%, 39% and 41% of Cu at 200, 400 and 600 mg Cu kg-1 soil level, compared to initial Cu concentration. Therefore, study concluded that flax has a great potential to accumulate high concentration of Cu in its shoots and can be utilized as phytoremediation material when grown in Cu contaminated soils.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Muhammad Kamran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Aasma Parveen
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muzammal Rehman
- School of Agriculture, Yunnan University, Kunming 650504, China.
| | - Sunny Ahmar
- MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zaffar Malik
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Rao Muhammad Ahmad Anjum
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System Core in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|