1
|
Mohanapriya V, Sakthivel R, Pham NDK, Cheng CK, Le HS, Dong TMH. Nanotechnology- A ray of hope for heavy metals removal. CHEMOSPHERE 2023; 311:136989. [PMID: 36309058 DOI: 10.1016/j.chemosphere.2022.136989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Environmental effects of heavy metal pollution are considered as a widespread problem throughout the world, as it jeopardizes human health and also reduces the sustainability of a cleaner environment. Removal of such noxious pollutants from wastewater is pivotal because it provides a propitious solution for a cleaner environment and water scarcity. Adsorption treatment plays a significant role in water remediation due to its potent treatment and low cost of adsorbents. In the last two decades, researchers have been highly focused on the modification of adsorption treatment by functionalized and surface-modified nanomaterials which has spurred intense research. The characteristics of nano adsorbents attract global scientists as it is also economically viable. This review shines its light on the functionalized nanomaterials application for heavy metals removal from wastewater and also highlights the importance of regeneration of nanomaterials in the view of visualizing the economic aspects along with a cleaner environment. The review also focused on the proper disposal of nanomaterials with crucial issues that persist in the adsorption process and also emphasize future research modification at a large-scale application in industries.
Collapse
Affiliation(s)
- V Mohanapriya
- Research scholar, Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India.
| | - R Sakthivel
- Department of Mechanical Engineering, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
| | - Nguyen Dang Khoa Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Huu Son Le
- Faculty of Automotive Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Thi Minh Hao Dong
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
2
|
Salimpour Abkenar S, Mohammad Ali Malek R. A Study on Dye Inclusion Complex, Adsorption, and Kinetic of Silk Floss Sheet Modified with β‐Cyclodextrin as a Biodegradable Adsorbent. STARCH-STARKE 2022. [DOI: 10.1002/star.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samera Salimpour Abkenar
- Research Center of Traditional Arts Research Institute of Cultural Heritage and Tourism (RICHT) Tehran 1343713411 Iran
| | | |
Collapse
|
3
|
Abstract
Due to their unique structural, physical and chemical properties, cyclodextrins and their derivatives have been of great interest to scientists and researchers in both academia and industry for over a century. Many of the industrial applications of cyclodextrins have arisen from their ability to encapsulate, either partially or fully, other molecules, especially organic compounds. Cyclodextrins are non-toxic oligopolymers of glucose that help to increase the solubility of organic compounds with poor aqueous solubility, can mask odors from foul-smelling compounds, and have been widely studied in the area of drug delivery. In this review, we explore the structural and chemical properties of cyclodextrins that give rise to this encapsulation (i.e., the formation of inclusion complexes) ability. This review is unique from others written on this subject because it provides powerful insights into factors that affect cyclodextrin encapsulation. It also examines these insights in great detail. Later, we provide an overview of some industrial applications of cyclodextrins, while emphasizing the role of encapsulation in these applications. We strongly believe that cyclodextrins will continue to garner interest from scientists for many years to come, and that novel applications of cyclodextrins have yet to be discovered.
Collapse
|
4
|
Hemine K, Łukasik N, Gazda M, Nowak I. β-cyclodextrin-containing polymer based on renewable cellulose resources for effective removal of ionic and non-ionic toxic organic pollutants from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126286. [PMID: 34098262 DOI: 10.1016/j.jhazmat.2021.126286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
A novel, bio-derived cyclodextrin-based trifunctional adsorbent has been successfully synthesized for efficient, rapid and simultaneous removal of a broad-spectrum of toxic ionic (anionic and cationic dyes) and non-ionic organic pollutants from water. The composition, morphology and the presence of functional groups in the obtained sorption material were characterized by elemental analysis, XRD, SEM, and FTIR spectroscopy. The adsorption results were represented by cationic dye (crystal violet, CV) and endocrine disrupting compound (bisphenol A, BPA) as an adsorbate. The sorption processes of the model pollutants were studied with both kinetic and equilibrium models. The results showed that the sorption was rapid (less than 1 min) and the time evolution could be fitted using a pseudo-second order model. According to Langmuir isotherm model, the maximum adsorption capacities were found at 113.64 and 43.10 mg g-1 for BPA and CV, respectively. The adsorption ability of β-CDPs was kept nearly on the same level after five regeneration cycles. Furthermore, almost complete removal of the pollutants was observed during the treatment of real effluents samples thus the bio-derived, cheap and reusable BAN-EPI-CDP has a promising potential for practical applications.
Collapse
Affiliation(s)
- Koleta Hemine
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Natalia Łukasik
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Maria Gazda
- Institute of Nanotechnology and Materials Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Tian B, Hua S, Tian Y, Liu J. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1317-1340. [PMID: 33079345 DOI: 10.1007/s11356-020-11168-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Water is a vital substance that constitutes biological structures and sustains life. However, water pollution is currently among the major environmental challenges and has attracted increasing study attention. How to handle contaminated water now mainly focuses on removing or reducing the pollutants from the wastewater. Cyclodextrin derivatives, possessing external hydrophilic and internal hydrophobic properties, have been recognized as new-generation adsorbents to exert positive effects on water pollution treatment. This article outlines recent contributions of cyclodextrin-based adsorbents on wastewater treatment, highlighting different adsorption mechanisms of cyclodextrin-based adsorbents under different influencing factors. The crosslinked and immobilized cyclodextrin-based adsorbents all displayed outstanding adsorption capacities. Particularly, according to specific pollutants including metal ions, organic chemicals, pesticides, and drugs in wastewater, this article has classified and organized various cyclodextrin-based adsorbents into tables, which could pave an intuitive shortcut for designing and developing efficient cyclodextrin-based adsorbents for targeted wastewater pollutants. Besides, this article specially discusses cost-effectiveness and regeneration performance of current cyclodextrin-based adsorbents. Finally, the challenges and future directions of cyclodextrin-based adsorbents are prospected in this article, which may shed substantial light on practical industrial applications of cyclodextrin-based adsorbents.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi, 830046, China.
| | - Shiyao Hua
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu Tian
- School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| | - Jiayue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Ahamad T, Naushad M, Mousa RH, Alshehri SM. Fabrication of starch-salicylaldehyde based polymer nanocomposite (PNC) for the removal of pollutants from contaminated water. Int J Biol Macromol 2020; 165:2731-2738. [PMID: 33736279 DOI: 10.1016/j.ijbiomac.2020.10.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
In the present study, we have fabricated magnetic nanocomposite based on the starch and salicylaldehyde resin embedded with magnetic Fe3O4 nanoparticles (SS@Fe3O4). The fabricated nanocomposite was characterized using various analytical methods including XRD, SEM, FTIR, TGA, TEM, BET and XPS. As-fabricated nanocomposite was used for the adsorption of Pb(II) and Cd(II) from aqueous solution. The adsorption results revealed that the maximum adsorption capacity was found to be 265.4 and 247.2 mg/g for Pb(II) and Cd(II) respectively at pH 6 and room temperature. The adsorption kinetic results support that the adsorption of both the toxic metals was carried out via second order reaction and the rate constants were found to be 6.31 × 10-5 and 7.18 × 10-5 g·mg-1·min-1 for Pb(II) and Cd(II) respectively. The adsorption isotherm displays the Langmuir adsorption isotherm and supports the monolayer and mainly chemisorption with poor physisorption. Additionally, the thermodynamic parameters were evaluated and the adsorption came true in exothermically and spontaneously with both Pb(II) and Cd(II). As-fabricated starch based magnetic nanocomposite displays excellent adsorption as well as outstanding reusability. Therefore, these outcomes support that the SS@Fe3O4 nanocomposite can be used as a promising adsorbent for industrial application.
Collapse
Affiliation(s)
- Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Korea; School of Life and Allied Health Sciences, Glocal University, Saharanpur, India
| | - Rashed Hassan Mousa
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Bezerra FM, Lis MJ, Firmino HB, Dias da Silva JG, Curto Valle RDCS, Borges Valle JA, Scacchetti FAP, Tessaro AL. The Role of β-Cyclodextrin in the Textile Industry-Review. Molecules 2020; 25:molecules25163624. [PMID: 32784931 PMCID: PMC7465207 DOI: 10.3390/molecules25163624] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/31/2023] Open
Abstract
β-Cyclodextrin (β-CD) is an oligosaccharide composed of seven units of D-(+)-glucopyranose joined by α-1,4 bonds, which is obtained from starch. Its singular trunk conical shape organization, with a well-defined cavity, provides an adequate environment for several types of molecules to be included. Complexation changes the properties of the guest molecules and can increase their stability and bioavailability, protecting against degradation, and reducing their volatility. Thanks to its versatility, biocompatibility, and biodegradability, β-CD is widespread in many research and industrial applications. In this review, we summarize the role of β-CD and its derivatives in the textile industry. First, we present some general physicochemical characteristics, followed by its application in the areas of dyeing, finishing, and wastewater treatment. The review covers the role of β-CD as an auxiliary agent in dyeing, and as a matrix for dye adsorption until chemical modifications are applied as a finishing agent. Finally, new perspectives about its use in textiles, such as in smart materials for microbial control, are presented.
Collapse
Affiliation(s)
- Fabricio Maestá Bezerra
- Textile Engineering (COENT), Universidade Tecnológica Federal do Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil;
- Correspondence: (F.M.B.); (M.J.L.)
| | - Manuel José Lis
- INTEXTER-UPC, Terrassa, 0822 Barcelona, Spain
- Correspondence: (F.M.B.); (M.J.L.)
| | - Helen Beraldo Firmino
- Postgraduate Program in Materials Science & Engineering (PPGCEM), Universidade Tecnológica Federal do Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil;
| | - Joyce Gabriella Dias da Silva
- Postgraduate Program in Environmental Engineering (PPGEA), Universidade Tecnológica Federal do Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil;
| | - Rita de Cassia Siqueira Curto Valle
- Department of Textile Engineering, Universidade Federal de Santa Catarina (UFSC), Blumenau 89036-002, Santa Catarina, Brazil; (R.d.C.S.C.V.); (J.A.B.V.)
| | - José Alexandre Borges Valle
- Department of Textile Engineering, Universidade Federal de Santa Catarina (UFSC), Blumenau 89036-002, Santa Catarina, Brazil; (R.d.C.S.C.V.); (J.A.B.V.)
| | | | - André Luiz Tessaro
- Chemistry graduation (COLIQ), Universidade Tecnológica Federal do Paraná (UTFPR), Apucarana 86812-460, Paraná, Brazil;
| |
Collapse
|