1
|
Mustafa A, Azim MK, Laraib Q, Rehman QMU. Hybrid constructed wetlands and filamentous fungi for treatment of mixed sewage and industrial effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44230-44243. [PMID: 38941051 DOI: 10.1007/s11356-024-34037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
Developing countries face multifaceted problems of water pollution and futile measures to combat water pollution. This study was conducted to explore the potential application of sustainable nature-based solutions, hybrid constructed wetlands, and the application of filamentous fungi to treat polluted river water that receives sewage and industrial wastewater. A pilot-scale hybrid constructed wetland design comprising two types of floating plants in distinct tanks along with a floating wetland and a free-water surface wetland connected in series was commissioned and tested. The system successfully removed organic pollution (BOD 94% and COD 90%), nutrients (NH4-N and NO3-N 67% and PO4-P 81%), and heavy metals (Cr 75%, Ni 56%, and Fe 79%) in 40 h and showed a high buffering capacity to cope with the varying pollutant loads. Metagenomics analysis of treated and untreated samples of river water revealed a diversified spatial bacterial community with ~ 25% sequences related to sulfur-metabolizing bacteria, genus Sulfuricurvum. The application of an immobilized strain of A. niger as a mycoremediation technique was also tested. It successfully removed pollutants in the combined sewage and industrial wastewater present in river water: COD (96%), TSS (97%), NH4-N (65%), NO3-N (67%), and PO4-P (78%). This study demonstrated that hybrid constructed wetlands and mycoremediation can be used as sustainable wastewater treatment options in the local context and also in developing countries where most of the conventional wastewater treatment plants do not operate.
Collapse
Affiliation(s)
- Atif Mustafa
- Department of Environmental Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan.
| | - Muhammad Kamran Azim
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, 75400, Pakistan
| | - Qandeel Laraib
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi, 75400, Pakistan
| | - Qazi Muneeb Ur Rehman
- Department of Environmental Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| |
Collapse
|
2
|
Fahim R, Cheng L, Mishra S. Structural and functional perspectives of carbon filter media in constructed wetlands for pollutants abatement from wastewater. CHEMOSPHERE 2023; 345:140514. [PMID: 37879377 DOI: 10.1016/j.chemosphere.2023.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Constructed wetlands (CWs) represent the most viable artificial wastewater treatment system that works on the principles of natural wetlands. Filter media are integrally linked to CWs and have substantial impacts on their performance for pollutant removal. Carbon-derived substrates have been in the spotlight for decades due to their abundance, sustainability, reusability, and potential to treat complex contaminants. However, the efficiency and feasibility of carbon substrates have not been fully explored, and there are only a few studies that have rigorously analyzed their performance for wastewater treatment. This critical synthesis of the literature review offers comprehensive insights into the utilization of carbon-derived substrates in the context of pollutant removal, intending to enhance the efficiency and sustainability of CWs. It also compares several carbon-based substrates with non-carbon substrates with respect to physiochemical properties, pollutant removal efficiency, and cost-benefit analysis. Furthermore, it addresses the concerns and possible remedies about carbon filtration materials such as configuration, clogging minimization, modification, and reusability to improve the efficacy of substrates and CWs. Recommendations made to address these challenges include pretreatment of wastewater, use of a substrate with smaller pore size, incorporation of multiple filter media, the introduction of earthworms, and cultivation of plants. A current scientific scenario has been presented for identifying the research gaps to investigate the functional mechanisms of modified carbon substrates and their interaction with other CW components.
Collapse
Affiliation(s)
- Raana Fahim
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liu Cheng
- Key Laboratory of Integrated Regulation and Resource Development Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
Huang L, Bao J, Zhao F, Liang Y, Chen Y. New insight for purifying polluted river water using the combination of large-scale rotating biological contactors and integrated constructed wetlands in the cold season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116433. [PMID: 36352732 DOI: 10.1016/j.jenvman.2022.116433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Ecological treatment technologies, applied to deal with polluted river water in the low temperature season, remain limited. In this study, a new insight was put forward for purifying polluted river water using a combination system (CS) of large-scale rotating biological contactors (RBCs) and integrated constructed wetlands in autumn and winter. The treatment performance, average removal contribution (RC), nitrification and denitrification rates, microbial community structure, and ecosystem service value were considered to estimate the combination system. Results revealed that the average removal efficiencies of ammonium (NH4+-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) reached 93.9%, 20.8%, 36.5%, and 37.1%, respectively. The combination system showed excellent removal efficiency of NH4+-N regardless of the effect of low temperature. The maximum values of nitrification and denitrification rates were 59.57 g N/(m3·d) and 0.78 g N/(m2·d), respectively. Considerable differences in bacterial community diversity, richness and relative abundance of functional microbes were observed in the main treatment units, resulting in different average RC to pollutants. The unit capital cost of CS purifying polluted river water was 260 USD/m3 and the operation and maintenance cost was 0.144 million USD/yr. Meanwhile, the ecosystem service value of the CS was 0.334 million USD in autumn and winter. CS not only possessed excellent pollutant purifying efficiencies, but also achieved high ecological service value in the cold season.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| | - Jun'an Bao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Fang Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yinkun Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, China.
| |
Collapse
|
4
|
Cui H, Yang Y, Zhang X, Dong L, Yang Y, Huang M, He Y, Lu X, Zhen G. Nitrogen removal and microbial mechanisms in a novel tubular bioreactor-enhanced floating treatment wetland for the treatment of high nitrate river water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10767. [PMID: 35941098 DOI: 10.1002/wer.10767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
A novel tubular bioreactor-enhanced floating treatment wetland (TB-EFTW) was developed for the in situ treatment of high nitrate river water. When compared with the enhanced floating treatment wetland (EFTW), the TB-EFTW system achieved 30% higher total nitrogen removal efficiency. Further, the average TN level of the TB-EFTW effluent was below the Grade IV requirement (1.5 mg/L) specified in Chinese standard (GB3838-2002). Microbial analysis revealed that both aerobic and anoxic denitrifying bacteria coexisted in the new system. The relative abundance of aerobic and anoxic denitrifiers were 42.69% and 22% at the middle and end of the tubular bioreactor (TB), respectively. It is reasonable to assume that effective nitrogen removal can mainly be attributed to the addition of solid carbon source and the spatial difference in DO distribution (oxic-anoxic areas in sequence) inside the TB. The initial investment cost and operating costs associated with the TB-EFTW system are approximately 14,000 and 3500 yuan per 1000 m3 river water, respectively. Considering its low cost, minimal maintenance requirements, and effective nitrogen removal, this newly developed system can be regarded as a promising technology for treating high nitrate river water. PRACTITIONER POINTS: A novel TB-EFTW system was developed to upgrade traditional in situ treatment techniques. The TB-EFTW could achieve 30% higher nitrogen removal efficiency than EFTWs. Both aerobic and anoxic denitrifying bacteria coexisted in the system. The system shows better technical and economic performance compared with routine techniques.
Collapse
Affiliation(s)
- He Cui
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xin Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Lei Dong
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yan He
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
5
|
He S, Song N, Yao Z, Jiang H. An assessment of the purification performance and resilience of sponge-based aerobic biofilm reactors for treating polluted urban surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45919-45932. [PMID: 35150429 DOI: 10.1007/s11356-022-19083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Pollutants are continuously released into surface waters, which decrease the dissolved oxygen (DO) concentration and leads to the formation of black-odorous water, especially in slow-flowing urban lakes and enclosed small ponds. In situ treatment by artificial aeration or water cycling, coupled with biofilm, can address this problem without occupying large amounts of land. In this study, we designed a novel sponge-based aerobic biofilm reactor (SABR) and evaluated its performance in purifying urban surface water under different conditions. In the urban lake water treatment, the continuous inflow results revealed that the NH4+-N and NO2--N concentrations in the effluent were stable and remained lower than 0.10 mg/L and 0.05 mg/L, respectively. Abrupt increases in the NH4+-N and NO2--N concentrations in the influent and sudden increases in the NH4+-N and NO2--N concentrations in the effluent were observed, and only 4 to 8 days were required for the concentrations to decline below 0.10 mg/L and 0.05 mg/L, respectively. Increases in the polyurethane sponge filling ratios in the SABRs can reduce the DO concentration but do not affect NH4+-N removal. When no biodegradable organic matter was present in the enclosed surface water, the degradation time of NH4+-N from 14.22 to 0.10 mg/L was only 9 days when SABRs were combined with water cycling, which was shorter than the time needed by water cycling alone (16 days), and most of the NH4+-N was converted to NO3--N. When massive amounts of biodegradable organic matter were present in the enclosed surface water, 22 days were required to remove the NH4+-N when SABRs were combined with water cycling. Our results indicated that organic matter could be used as a carbon source to eliminate the produced NO3--N in SABRs. Therefore, the newly developed bioreactor provides an effective approach for treating N-polluted urban surface waters.
Collapse
Affiliation(s)
- Shangwei He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Zongbao Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| |
Collapse
|
6
|
Lun YE, Abdullah SRS, Hasan HA, Othman AR, Kurniawan SB, Imron MF, Al Falahi OA, Said NSM, Sharuddin SSN, Ismail N'I. Integrated emergent-floating planted reactor for textile effluent: Removal potential, optimization of operational conditions and potential forthcoming waste management strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114832. [PMID: 35303596 DOI: 10.1016/j.jenvman.2022.114832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.
Collapse
Affiliation(s)
- Yeow Eu Lun
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia.
| | - Osama Abrahiem Al Falahi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Fallujah Hospital, Anbar Health Directorate, Iraqi Ministry of Health, Iraq.
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Shilatul Najwa Sharuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
7
|
How Do Green Human Resource Management Practices Encourage Employees to Engage in Green Behavior? Perceptions of University Students as Prospective Employees. SUSTAINABILITY 2022. [DOI: 10.3390/su14031718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study measured the perceptions of prospective employees (university students) towards organizations practicing green human resource management and how these perceptions could influence their future green behavior in the workplace. The sample of the study consisted of students from the largest university in North Cyprus and 400 questionnaires were administered with 342 valid responses being returned. The data was tested by confirmatory factor analysis by using analysis of moment structures (AMOS) software version 24.0 and factor, regression, and correlation analyses were conducted. The data analysis revealed that green human resource management had a direct influence on prospective employees’ perceived green task-related and voluntary behaviors and an indirect influence via the mediation of psychological green climate perception. The importance of incorporating sustainable dimensions within HRM departments, as well as the function of GHRM practices in achieving sustainability, was highlighted in this study. This study further contributes to the literature of behavioral HRM and focuses on the green side of HRM to contribute to the environmental management literature as well as providing insight into prospective employees’ (students) perceptions of GHRM practices, which will create an impact on their future green workplace behaviors.
Collapse
|
8
|
Nuruzzaman M, Anwar AHMF, Sarukkalige R, Sarker DC. Review of hydraulics of Floating Treatment Islands retrofitted in waterbodies receiving stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149526. [PMID: 34467926 DOI: 10.1016/j.scitotenv.2021.149526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Stormwater pollution causes an excessive influx of nutrients and metals to the receiving waterbodies (stormwater ponds, lakes, and rivers), which can cause eutrophication and metal toxicity. One of the most cost-effective and eco-friendly solutions to stormwater pollution is constructing Floating Treatment Islands (FTIs) within the waterbodies receiving stormwater runoff. Treatment efficiency of FTIs depends on many factors including plant species, temperature, detention time, and pollutant loading rate. Another important factor is FTI hydraulics, which determines the amount of inflow to the root zone and residence time, greatly impacting the treatment. However, only a few studies refer to the hydraulics of waterbodies retrofitted with FTIs. This paper reviews available literature on field-scale, laboratory-scale and numerical studies on the hydraulics of FTI retrofitted waterbodies. Because of limited knowledge on the factors affecting hydraulics of waterbodies retrofitted with FTIs, current practices cannot ensure maximum hydraulic performance of this system. This review paper identifies different factors affecting the FTI hydraulics, investigates knowledge gaps, and provides future research direction for hydraulically efficient design of FTIs to treat stormwater. It was found that there is a need to investigate the impact of new design parameters such as FTI shape, FTI coverage, inlet-outlet configurations, and shape of waterbody on the hydraulic performance of FTI retrofitted waterbodies. A lack of dimensional analysis on FTI retrofitted waterbodies in existing literature revealed that field-scale values were not properly scaled down in laboratory experiments. Although a few short-circuiting prevention mechanisms (SPMs) were used in different field-scale studies, those mechanisms may be vulnerable to short-circuiting in the vertical dimension. It was revealed that studying the role of eddy diffusion and gap layer for vertical short-circuiting can help designing better SPMs. This review also identified that further investigation is required to incorporate root flexibility in the current modeling approach of FTI retrofitted waterbodies.
Collapse
Affiliation(s)
- Md Nuruzzaman
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| | - A H M Faisal Anwar
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Ranjan Sarukkalige
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Dipok Chandra Sarker
- School of Civil and Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
9
|
Ruan W, Cai H, Xu X, Man Y, Wang R, Tai Y, Chen Z, Vymazal J, Chen J, Yang Y, Zhang X. Efficiency and plant indication of nitrogen and phosphorus removal in constructed wetlands: A field-scale study in a frost-free area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149301. [PMID: 34371418 DOI: 10.1016/j.scitotenv.2021.149301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Frost-free areas have suitable climate for wetland plant growth and constructed wetlands (CW) technology. Information on the quantification of plant biomass and uptake efficiency in field-scale CWs is limited in these climates. The removal efficiency of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and total suspended solids (TSS) in wastewater from sewage plants, domestic sewage, and an industrial park in 15 rural and urban CWs in Guangdong Province, China, with an average temperature of 30 °C was evaluated. The effects of influent concentration, hydraulic load, the wastewater's physicochemical properties, operating conditions, and plant uptake were analysed. The mean removal rates were 40.0%, 45.2%, 41.1%, and 71.7% for TN, TP, COD, and TSS, respectively, which were higher than the removal load of the field-scale CWs in temperate regions. Removal loads of TN, TP, COD, and TSS were highest in CWs that have been operating for 5-6 years, treating wastewater volumes of over 1 m3/m2·d. The removal efficiency was mainly related to the inflow concentration and less affected by the type of CWs. Nutrient accumulation trends were primarily linked to influent concentrations (TN: r2 = 0.89, P = 0.007; TP: r2 = 0.96, P = 0.001) and plant biomass (TN: r2 = 0.96, P = 0.001; TP: r2 = 0.92, P = 0.004). Plant biomass contributed 2%-29% and 2%-70%, respectively, to removing N and P in CWs. The average uptake concentration of N and P in aboveground plant organs (15.66 ± 4.44 mg N/g, 2.15 ± 1.18 mg P/g) was generally higher than that of other temperate plants. A strong relationship between TN and TP in the biomass was also observed; however, the relationship is only restricted by the influent TP concentration. Arundo donax is well-adapted for nutrient accumulation and adaptation and is an ideal wetland plant to purify wastewater in frost-free climates.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Hongbo Cai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Xiaomin Xu
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Rui Wang
- College of Life Science, Sichuan Normal University, Chengdu 610041, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Juexin Chen
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Xiaomeng Zhang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
10
|
Shen S, Li X, Lu X. Recent developments and applications of floating treatment wetlands for treating different source waters: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62061-62084. [PMID: 34586569 DOI: 10.1007/s11356-021-16663-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Most water bodies around the world suffer from pollution to varying degrees. Floating treatment wetlands (FTWs) are a simple and efficient ecological treatment technology and have been widely studied and applied as a sustainable solution for different source waters. Based on the analysis of abundant literature in the last ten years, this paper systematically reviews the history and the latest development of FTWs. Meanwhile, the treatment performance and pollutant removal mechanisms of FTWs on the natural water, stormwater, domestic wastewater, industrial wastewater, and agricultural runoff are analyzed. In particular, very interesting information is provided, such as water depth, water surface coverage, the ratio of dissolved to total phosphorous (DRP/TP), the ratio of nitrogen to phosphorous (N/P), BOD/COD ratio, and its effects on the efficiency and removal mechanisms of FTWs. This information will provide useful references and guidance for optimizing the design of FTW and pollutant treatment efficiency of different source waters. This paper also provides an objective review of the limitations of FTWs. Subsequently, the enhancements of FTW technology which are recognized to be effective, including aeration, adding functional fillers or obligate degrading bacteria, and construction of hybrid FTWs, are summarized and recommendations are made for further research.
Collapse
Affiliation(s)
- Shuting Shen
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiang Li
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiwu Lu
- Sch Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
11
|
Zeng L, Dai Y, Zhang X, Man Y, Tai Y, Yang Y, Tao R. Keystone Species and Niche Differentiation Promote Microbial N, P, and COD Removal in Pilot Scale Constructed Wetlands Treating Domestic Sewage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12652-12663. [PMID: 34478283 DOI: 10.1021/acs.est.1c03880] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The microbial characteristics related to nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) removal were investigated in three pilot scale constructed wetlands (CWs). Compared to horizontal subsurface flow (HSSF) and surface flow (SF) CWs, the aerobic vertical flow (VF) CW enriched more functional bacteria carrying genes for nitrification (nxrA, amoA), denitrification (nosZ), dephosphorization (phoD), and methane oxidation (mmoX), while the removal of COD, total P, and total N increased by 33.28%, 255.28%, and 299.06%, respectively. The co-occurrence network of functional bacteria in the HSSF CW was complex, with equivalent bacterial cooperation and competition. Both the VF and SF CWs exhibited a simple functional topological structure. The VF CW reduced functional redundancy by forming niche differentiation, which filtered out keystone species that were closely related to each other, thus achieving effective sewage purification. Alternatively, bacterial niche overlap protected a single function in the SF CW. Compared with the construction type, temperature, and plants had less effect on nutrient removal in the CWs from this subtropical region. Partial least-squares path modeling (PLS-PM) suggests that high dissolved oxygen and oxidation-reduction potential promoted a diverse bacterial community and that the nonkeystone bacteria reduced external stress for functional bacteria, thereby indirectly promoting nutrient removal.
Collapse
Affiliation(s)
- Luping Zeng
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yunv Dai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Xiaomeng Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ying Man
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yiping Tai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ran Tao
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
12
|
Zhao C, Xu J, Shang D, Zhang Y, Zhang J, Xie H, Kong Q, Wang Q. Application of constructed wetlands in the PAH remediation of surface water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146605. [PMID: 34030309 DOI: 10.1016/j.scitotenv.2021.146605] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose adverse risks to ecosystems and public health because of their carcinogenicity and mutagenicity. As such, the extensive occurrence of PAHs represents a worldwide concern that requires urgent solutions. Wastewater treatment plants are not, however, designed for PAH removal and often become sources of the PAHs entering surface waters. Among the technologies applied in PAH remediation, constructed wetlands (CWs) exhibit several cost-effective and eco-friendly advantages, yet a systematic examination of the application and success of CWs for PAH remediation is missing. This review discusses PAH occurrence, distribution, and seasonal patterns in surface waters during the last decade to provide baseline information for risk control and further treatment. Furthermore, based on the application of CWs in PAH remediation, progress in understanding and optimising PAH-removal mechanisms is discussed focussing on sediments, plants, and microorganisms. Wetland plant traits are key factors affecting the mechanisms of PAH removal in CWs, including adsorption, uptake, phytovolatilization, and biodegradation. The physico-chemical characteristics of PAHs, environmental conditions, wetland configuration, and operation parameters are also reviewed as important factors affecting PAH removal efficiency. Whilst significant progress has been made, several key problems need to be addressed to ensure the success of large-scale CW projects. These include improving performance in cold climates and addressing the toxic threshold effects of PAHs on wetland plants. Overall, this review provides future direction for research on PAH removal using CWs and their large-scale operation for the treatment of PAH-contaminated surface waters.
Collapse
Affiliation(s)
- Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Dawei Shang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Yanmeng Zhang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Technology, Shandong University, Jinan 250100, China.
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qian Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
13
|
Nguyen XC, Ly QV, Peng W, Nguyen VH, Nguyen DD, Tran QB, Huyen Nguyen TT, Sonne C, Lam SS, Ngo HH, Goethals P, Le QV. Vertical flow constructed wetlands using expanded clay and biochar for wastewater remediation: A comparative study and prediction of effluents using machine learning. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125426. [PMID: 33621772 DOI: 10.1016/j.jhazmat.2021.125426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated and compared the performance of two vertical flow constructed wetlands (VF) using expanded clay (VF1) and biochar (VF2), of which both are low-cost, eco-friendly, and exhibit potentially high adsorption as compared to conventional filter layers. Both VFs achieved relatively high removal for organic matters (i.e. Biological oxygen demand during 5 days, BOD5) and nitrogen, accounting for 9.5 - 10.5 g.BOD5.m-2.d-1 and 3.5 - 3.6 g.NH4-N.m-2.d-1, respectively. The different filter materials did not exert any significant discrepancy to effluent quality in terms of suspended solids, organic matters and NO3-N (P > 0.05), but they did influence NH4-N effluent as evidenced by the removal rate of that by VF1 and VF2 being of 82.4 ± 5.7 and 84.6 ± 6.4%, respectively (P < 0.05). The results obtained from the designed systems were further subject to machine learning to clarify the effecting factors and predict the effluents. The optimal algorithms were random forest, generalized linear model, and support vector machine. The values of the coefficient of determination (R2) and the root mean square error (RMSE) of whole fitting data achieved 74.0% and 5.0 mg.L-1, 80.0% and 0.3 mg.L-1, 90.1% and 2.9 mg.L-1, and 48.5% and 0.5 mg.L-1 for BOD5_VF1, NH4-N_VF1, BOD5_VF2, and NH4-N_VF2, respectively.
Collapse
Affiliation(s)
- Xuan Cuong Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Quang Viet Ly
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Van-Huy Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Quoc Ba Tran
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Thi Thanh Huyen Nguyen
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Peter Goethals
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent, Belgium
| | - Quyet Van Le
- Laboratory of Energy and Environmental Science, Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
| |
Collapse
|
14
|
Liao R, Jin Z, Chen M, Li S. An integrated approach for enhancing the overall performance of constructed wetlands in urban areas. WATER RESEARCH 2020; 187:116443. [PMID: 32979580 DOI: 10.1016/j.watres.2020.116443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetlands (CWs) are an important component of the urban matrix and play an essential role in the restoration of urban ecological environments. Although existing studies have mainly focused on the efficiency of technologies for removing pollutants in wastewater, efforts to intensify the overall performance of CWs have not been reported. Here, we propose a novel theoretical scheme for promoting optimal overall performance of CWs through the development of an integrated approach, entailing simulation, evaluation, and optimization strategies for their management. We successfully simulated the water distribution system of the Yanfangdian CW in Beijing, China, applying 42 hydrological parameters within the MIKE 21 software. We further evaluated our simulation results by performing an analytic hierarchy process to calculate performance scores. The back propagation neural network was well trained to quantify the relationship between the hydrological parameters and the overall performance of CW based on its water distribution characteristics and their corresponding scores. Subsequently, a genetic algorithm was applied to determine the hydrological solution. A strategy for optimizing the water level and flow was formulated for improving the ecological, purification and storage performances of the targeted CW along with a flexible strategy for ensuring its proper functioning. Our approach provides a robust and universal platform that can contribute significantly to the advancement of CWs that have a wide range of applications and could be extended to other ecosystems.
Collapse
Affiliation(s)
- Renkuan Liao
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China; Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zhengyuan Jin
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Minghong Chen
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shuqin Li
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
15
|
Zeng L, Tao R, Tam NFY, Huang W, Zhang L, Man Y, Xu X, Dai Y, Yang Y. Differences in bacterial N, P, and COD removal in pilot-scale constructed wetlands with varying flow types. BIORESOURCE TECHNOLOGY 2020; 318:124061. [PMID: 32905947 DOI: 10.1016/j.biortech.2020.124061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms of bacterial nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) removal in pilot-scale constructed wetlands (CWs) were investigated in the present work. Three types of CWs were assessed: vertical flow (VF), horizontal flow (HF), and surface flow (SF), each with three planting conditions, with either Thalia, Canna or without plants. The results show that construction types affected microbes more than planting conditions. VF CWs promoted the aerobic processing of total N, total P, COD, and NH3-N, increasing the respective removal efficiencies by 4-19%, 13-32%, 19-29%, and 75-80%, respectively, compared with SF CWs. The relative abundance of nitrifying, denitrifying, methanotrophic and dephosphorized bacteria, and functional genes such as nxrA, nirK, nosZ, mmoX, and phoD were higher in VF CWs. Positive and simple gene networks in VF CWs can effectively reduce the redundancy in functional genes, enhance bacterial function and gene interactions, thus promoting nutrient removal.
Collapse
Affiliation(s)
- Luping Zeng
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ran Tao
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, The Open University of Hong Kong, Ho Man Tin, Kowloon, Hong Kong
| | - Wenda Huang
- China Water Resources Pearl River Planning Surveying & Designing Co., Ltd., Guangzhou 510610, China
| | - Longzhen Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ying Man
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Xiaomin Xu
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yunv Dai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
16
|
Saeed T, Miah MJ, Majed N, Hasan M, Khan T. Pollutant removal from landfill leachate employing two-stage constructed wetland mesocosms: co-treatment with municipal sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28316-28332. [PMID: 32415455 DOI: 10.1007/s11356-020-09208-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetlands are low-cost, natural technologies that are often employed for the treatment of different types of wastewater. In this study, landfill leachate and municipal wastewater were co-treated by the three parallel two-stage Phragmites- or Vetiver-based constructed wetland mesocosms. Two-stage wetland mesocosms included vertical flow (VF) units as the first stage, followed by horizontal flow (HF)/surface flow (SF)/floating treatment (FT) units. VF and HF wetland mesocosms were filled with gravel, steel slag, concrete block, and intermittent carbon-saturated ceramic filters as substrates. Mean input nitrogen, organics, and phosphorus load across first stages were 75 g N/m2 day, 283 g COD/m2 day, 88 g BOD/m2 day, and 10 g P/m2 day, respectively. N and P accumulation rate was not substantial (< 10%) with respect to total removal in most wetland mesocosms. Gravel-based VF wetland mesocosm achieved better NH4-N and BOD removal (55-59%) during landfill leachate treatment phase, when compared with co-treatment periods (12-52%). Slag-concrete- and ceramic filter-based VF wetland mesocosms maintained stable NH4-N and BOD removals; the former wetland mesocosm was the most efficient VF unit (than other two wetland mesocosms) due to media characteristics. Media-based adsorption accelerated P removal (93%) in slag-concrete-based VF wetland mesocosm. Carbon scarcity limited denitrification in all VF wetland mesocosms; removal of TN was < 32%. Second stage wetland mesocosms achieved higher nitrogen (85-92%), organics (66-90%), and phosphorus (97-100%) removals regardless of operational variations; low input load, long retention time, media, and rhizosphere enhanced removal performances, particularly in HF and FT wetland mesocosms. In general, this study demonstrates potential application of two-stage wetland mesocosms for landfill leachate treatment or co-treatment with municipal sewage.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Md Jihad Miah
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Mahmudul Hasan
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Tanbir Khan
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| |
Collapse
|