1
|
Mugwili ME, Waanders FB, Masindi V, Fosso-Kankeu E. An update on sustainabilities and challenges on the removal of ammonia from aqueous solutions: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119172. [PMID: 37793297 DOI: 10.1016/j.jenvman.2023.119172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome". In this review, latest updates regarding the sustainabilities, advancements and challenges for the removal of ammonia from aqueous solutions, i.e., river and waste waters, are briefly elucidated in light of future perspectives. Viable routes and ideal hotspots, i.e., wastewater and drinking water, for ammonia removal under the cost-effective options have been unpacked. Key mechanisms for the removal of ammonia were grossly bioremediation, oxidation, adsorption, filtration, precipitation, and ion exchange. Finally, this review denoted biological nutrient removal, struvite precipitation, and breakpoint chlorination as the most effective and promising technologies for the removal of ammonia from aquatic environments, although at the expense of energy and operational cost. Lastly, the future perspective, avenues of exploitation, and technical facets that deserve in-depth exploration are duly underscored.
Collapse
Affiliation(s)
- Muyahavho Enemiah Mugwili
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa
| | - Frans Boudewijn Waanders
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa
| | - Vhahangwele Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - Elvis Fosso-Kankeu
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology (CSET), University of South Africa, Florida Science Campus, South Africa; Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
2
|
Mugwili ME, Waanders FB, Masindi V, Fosso-Kankeu E. Effective removal of ammonia from aqueous solution through struvite synthesis and breakpoint chlorination: Insights into the synergistic effects of the hybrid system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117506. [PMID: 36801679 DOI: 10.1016/j.jenvman.2023.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The ever-growing contamination of surface water due to various catchment activities poses threats and stress to downstream water treatment entities. Specifically, the presence of ammonia, microbial contaminants, organic matter, and heavy metals has been an issue of paramount concern to water treatment entities since stringent regulatory frameworks require these pollutants to be removed prior to water consumption. Herein, a hybrid approach that integrates struvite crystallization (precipitation) and breakpoint chlorination (stripping) for the removal of ammonia from aqueous solution was evaluated. To fulfil the goals of this study, batch experimental studies were pursued through the adoption of the well-known one-factor-at-a-time (AFAAT) method, specifically the effects of time, concentration/dosage, and mixing speed. The fate of chemical species was underpinned using the state-of-the-art analytical instruments and accredited standard methods. Cryptocrystalline magnesium oxide nanoparticles (MgO-NPs) were used as the magnesium source while the high-test hypochlorite (HTH) was used as the source of chlorine. From the experimental results, the optimum conditions were observed to be, i.e., Stage 1 - struvite synthesis, 110 mg/L of Mg and P dosage (concentration), 150 rpm of mixing speed, 60 min of contact time, and lastly, 120 min of sedimentation while optimum condition for the breakpoint chlorination (Stage 2) were 30 min of mixing and 8:1 Cl2:NH3 weight ratio. Specifically, in Stage 1, i.e., MgO-NPs, the pH increased from 6.7 to ≥9.6, while the turbidity was reduced from 9.1 to ≤1.3 NTU. Mn removal efficacy attained ≥97.70% (reduced from 174 μg/L to 4 μg/L) and Fe attained ≥96.64% (reduced from 11 mg/L to 0.37 mg/L). Elevated pH also led to the deactivation of bacteria. In Stage 2, i.e. breakpoint chlorination, the product water was further polished by eliminating residual ammonia and TPC at 8:1 Cl2-NH3 weight ratio. Interestingly, ammonia was reduced from 6.51 to 2.1 mg/L in Stage 1 (67.74% removal) and then from 2.1 to 0.002 mg/L post breakpoint chlorination (99.96% removal), i.e., stage 2. Overall, synergistic and complementary effects of integrating struvite synthesis and breakpoint chlorination hold great promise for the removal of ammonia from aqueous solutions thus confirming that this technology could potentially be used to curtail the effects of ammonia in the receiving environments and drinking water.
Collapse
Affiliation(s)
- Muyahavho Enemiah Mugwili
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa
| | - Frans Boudewijn Waanders
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa
| | - Vhahangwele Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa; Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - Elvis Fosso-Kankeu
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology (CSET), University of South Africa, Florida Science Campus, South Africa; Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
3
|
Zhao Z, Wang B, Feng Q, Chen M, Zhang X, Zhao R. Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160289. [PMID: 36414073 DOI: 10.1016/j.scitotenv.2022.160289] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
A large amount of wastewater containing nitrogen, phosphorus, and fluorine produces in the production of phosphate fertilizer. In this study, to simultaneously recover nitrogen and phosphorus from phosphorus-containing wastewater and realize the resource utilization of red mud and rape straw, red mud-modified rape straw biochar (RM/RSBC) was prepared by facile one step, and the physicochemical properties were characterized by Zeta potential, SEM-EDS, BET specific surface area (SSA), FTIR, XRD, and XPS. The adsorption performance and mechanisms of ammonium and phosphate onto RM/RSBC were explored through static, fixed-bed column adsorption, and practical wastewater experiments. The results showed that pH = 3.0 and 8.0 were favorable for the removal of phosphate and ammonium, respectively. The main adsorption mechanisms of ammonium and phosphate were the interaction between ammonium and surface functional groups and surface precipitation, respectively. The removal efficiencies of ammonium and phosphate by fixed-bed column adsorption mainly depended on the addition amount of RM/RSBC, the concentration of ammonium and phosphate, and the flow rate. The results of the germination experiment showed that adding > 0.5 wt% of RM/RSBC loaded with ammonium and phosphate promoted the growth of mung beans. This study shows that RM/RSBC can not only recover ammonium and phosphate in wastewater, but also realize the resource utilization of red mud and rape straw.
Collapse
Affiliation(s)
- Zhipeng Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xueyang Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ruohan Zhao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
S R, Sabumon PC. A critical review on slaughterhouse waste management and framing sustainable practices in managing slaughterhouse waste in India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116823. [PMID: 36455438 DOI: 10.1016/j.jenvman.2022.116823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Global meat consumption is on a rise with around 253 million metric tons of meat produced globally in the year 2020. Because of the rise in population and change in food preferences, meat consumption trend is likely to continue. Meat production by animal slaughtering increases the slaughterhouse wastes in the form of both solid and liquid wastes. Although various technologies for slaughterhouse waste management are available in developed countries, the effective utilization of slaughterhouse waste management is still missing in developing countries like India. India plays an active role in the meat export business globally and stood 2nd in the world with a total export valuation of 2.89 billion US $ in the year 2020. In this context, this study presents a critical overview of the current technological advancements in the global slaughterhouse waste management including utilization of by-products and further, the prevailing slaughterhouse waste management of India is discussed. Finally, a sustainable slaughterhouse waste management strategy emphasizing circular economy and regulations improvements have been suggested for India to compete in this sector at global scale.
Collapse
Affiliation(s)
- Ragasri S
- School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, India
| | - P C Sabumon
- School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, 600127, India.
| |
Collapse
|
5
|
Wang Y, Tian J, Peng J, Sun W, Zhang X, Han H, Shen J. Fundamental research on selective arsenic removal from high-salinity alkaline wastewater. CHEMOSPHERE 2022; 307:135992. [PMID: 35964730 DOI: 10.1016/j.chemosphere.2022.135992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The alkaline leaching process of arsenic-containing solid waste discharged during nonferrous metal smelting affords typical high-salinity alkaline arsenic-containing wastewater (HSAW). In this study, for the first time, Me (Ca2+ and Mg2+)-AsO43--OH--H2O and Me (Ca2+ and Mg2+)-AsO43--CO32--H2O systems are studied based on a thermodynamic equilibrium diagram and an arsenic removal experiment, proving that the removal of arsenic using single metal ions in the presence of CO32- is infeasible because of carbonate coprecipitation. Based on this observation, a new method that uses magnesium ammonium complex salts (MACSs) for HSAW treatment is proposed. Based on the thermodynamic calculations of the Mg2+-AsO43--NH4+-CO32--H2O system and the arsenic removal experiment, carbonate and arsenate can be selectively separated by the formation of magnesium ammonium arsenate (NH4MgAsO4·6H2O). In an arsenic solution containing 150-g/L Na2CO3, the arsenic removal rate and the arsenic grade of the precipitation product reach 90.16% and 27.13%, respectively, when the molar ratios of Mg2+/NH4+:As(V) are 1.8:1 and 2:1, respectively. The proposed method is successfully employed for treating a leaching solution of alkaline arsenic slag discharged during antimony smelting. The findings of this study will broaden the basic theory of HSAW treatment and lay a foundation for the resource treatment of arsenic-containing solid waste.
Collapse
Affiliation(s)
- Yufeng Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| | - Jia Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jun Peng
- Lengshuijiang Antimony Capital Environmental Protection Co., Ltd, Lengshuijiang, PR China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Xingfei Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Haisheng Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| | - Jifeng Shen
- Lengshuijiang Antimony Capital Environmental Protection Co., Ltd, Lengshuijiang, PR China
| |
Collapse
|
6
|
Shukla A, Prakash O, Biswas R, Vijay R, Pal S. Design and preliminary techno-economic assessment of a pilot scale pharmaceutical wastewater treatment system for ammonia removal and recovery of fertilizer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115898. [PMID: 35985267 DOI: 10.1016/j.jenvman.2022.115898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Recovery of nutrients from wastewater has a paramount importance for a sustainable and safe environment. In this study removal of ammonia and recovery of resources in the form of struvite from a complex pharmaceutical acidic wastewater having high concentration of ammoniacal nitrogen (NH4-N > 40 g/L) and other co-existing contaminants (magnesium, phosphorous, phenol etc.) was explored. Response Surface Methodology (RSM) was employed for design of experiments and process optimization. RSM results revealed that removal of ammoniacal nitrogen, i.e., struvite precipitation was found to be maximum in alkaline pH (10.5-11.0) at a N:Mg molar ratio (1:0.030 to 1:0.035) and N:P molar ratio (1:0.025 to 1:0.030). X-Ray diffraction, thermo-gravimetric analysis and Fourier transform-infrared spectroscopy confirmed the presence of struvite crystals in the obtained precipitate. Techno-economic assessment (TEA) based on mass energy balance principle and market equipment specifications revealed that a pilot-scale plant set up would have a break-even period of 1.06 years with a return on investment as 94.28%. This clearly elucidated the economic viability of the developed process for industrial applications for management of high ammonia laden pharmaceutical wastewater. While further specific technological improvements are needed for reduction of cost, this study will guide researchers and industries for careful selection of target markets to reduce the cost for successful implementation.
Collapse
Affiliation(s)
- Amol Shukla
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - Om Prakash
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
| | - Rima Biswas
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ritesh Vijay
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sukdeb Pal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Wan H, Wang R, Wang B, Zhang K, Shi H, Wang H. A Case Study of Swine Wastewater Treatment via Electrochemical Oxidation by Ti 4O 7 Anode. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13840. [PMID: 36360720 PMCID: PMC9654369 DOI: 10.3390/ijerph192113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of breeding industry, the efficient treatment of dramatically increasing swine wastewater is gradually becoming urgent. In particular, the development of application technologies suitable for the relatively small piggeries is critical due to the time cost and space requirements of conventional biological methods. In this study, Electrochemical oxidation (EO) was selected to systematically explore the treatment performance of three different swine wastewaters by Ti4O7 anode. It was observed that the colors changed from dark brown to light yellow after 60 min treatment at 50 mA/cm2, and the removal rates of turbidity and suspended solids ranged from 89.36% to 93.65% and 81.31% to 92.55%, respectively. The chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) of all the three swine wastewaters were simultaneously removed to a very low concentration in 120 min, especially for sample III, 61 ± 9 mg/L of COD, 6.6 ± 0.4 mg/L of NH3-N and 5.7 ± 1.1 mg/L of TP, which met the Discharge Standard of Pollutants for Livestock and Poultry Breeding (GB 18596-2001). Moreover, 70.93%-85.37% mineralization rates were also achieved in 120 min, confirming that EO treatment by Ti4O7 could efficiently remove the organic matters in wastewater. Excitation-emission matrix (EEM) and UV-vis spectrum characterization results further proved that aromatic compounds and macromolecules in wastewater were rapidly removed, which played important roles in the mineralization processes. The findings here provided an efficient and environment-friendly technology for swine wastewater treatment.
Collapse
Affiliation(s)
- Hongyou Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Ruifeng Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- College of Resources and Environmental Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Beibei Wang
- College of Resources and Environmental Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Kehao Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Hailong Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Yetilmezsoy K, Kıyan E, Ilhan F, Özçimen D, Koçer AT. Screening plant growth effects of sheep slaughterhouse waste-derived soil amendments in greenhouse trials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115586. [PMID: 35753126 DOI: 10.1016/j.jenvman.2022.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Ameliorative effects of sheep slaughterhouse waste-derived soil amendments (struvite, blood meal, bone meal) were explored and quantified by a series of comparative greenhouse trials. A scoring matrix system was developed for 25 different test plants using 300 agricultural measurements obtained for three basic growth parameters (fresh-dry plant weights and plant heights) and four different fertilizer sources including solid vermicompost. More than 70% of NH4+-N recovery from sheep slaughterhouse wastewater was achieved using a chemical combination of MgCl2.6H2O + NaH2PO4.2H2O, a molar ratio of Mg2+:NH4+-N:PO43-P = 1.2:1:1, a reaction pH of 9.0, an initial NH4+-N concentration of 240 mg/L, and a reaction time of 15 min. According to SEM micrographs, surface morphology of struvite exhibited a highly porous structure composed of irregularly shaped crystals of various sizes (11.34-79.38 μm). FTIR spectroscopy verified the active functional groups on the proximity of all fertilizer sources within the spectral range of 500-3900 cm-1. TGA-DTG-DSC thermograms of struvite revealed that the mass loss occurred in two temperature regions and reached a maximum mass loss rate of 1.63%/min at 317 °C. The average percentages of increase (57.55-100.62%) and performance points (69-79) corroborated that the fertility value of struvite ranked first on average in cultivation of the analyzed plant species. Findings of this agro-valorization study confirmed that sheep slaughterhouse waste-derived fertilizers could be a beneficial way to promote bio-waste management and environmentally friendly agriculture.
Collapse
Affiliation(s)
- Kaan Yetilmezsoy
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Emel Kıyan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Fatih Ilhan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Didem Özçimen
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Anıl Tevfik Koçer
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| |
Collapse
|
9
|
Wu J, Li Y, Xu B, Li M, Wang J, Shao Y, Chen F, Sun M, Liu B. Effects of Physicochemical Parameters on Struvite Crystallization Based on Kinetics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127204. [PMID: 35742453 PMCID: PMC9222832 DOI: 10.3390/ijerph19127204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
The precipitation of struvite (MgNH4PO4·6H2O) is considered to be a promising method for the recovery of phosphate from wastewater. In this review, the kinetic models, which are commonly used to explain the process of struvite crystallization, are described. The mixed-suspension mixed-product removal (MSMPR) model is based on the population balance equation (the size-dependent growth model and the size-independent growth model). Thereafter, the first-order kinetic fitting model that aligned with concentration changes in the substrate is summarized. Finally, the several physical and chemical factors that affected the efficiency of struvite crystallization are determined. The supersaturation ratio, which is seen as the driving force of struvite crystallization, is the main factor that influences crystallization; however, it cannot be used in practical applications of engineering because it is indirectly associated with the following factors: pH, the molar ratio of Mg:N:P, and the interference of foreign impurities. In this study, we present conclusions that should be used to guide further research studies, and encourage the engineering practice of wastewater treatment with struvite precipitation.
Collapse
Affiliation(s)
- Jinzhu Wu
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; (J.W.); (Y.L.); (B.X.); (M.L.); (J.W.); (Y.S.); (F.C.)
| | - Yifan Li
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; (J.W.); (Y.L.); (B.X.); (M.L.); (J.W.); (Y.S.); (F.C.)
| | - Baojian Xu
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; (J.W.); (Y.L.); (B.X.); (M.L.); (J.W.); (Y.S.); (F.C.)
| | - Mei Li
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; (J.W.); (Y.L.); (B.X.); (M.L.); (J.W.); (Y.S.); (F.C.)
| | - Jing Wang
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; (J.W.); (Y.L.); (B.X.); (M.L.); (J.W.); (Y.S.); (F.C.)
| | - Yuanyuan Shao
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; (J.W.); (Y.L.); (B.X.); (M.L.); (J.W.); (Y.S.); (F.C.)
| | - Feiyong Chen
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; (J.W.); (Y.L.); (B.X.); (M.L.); (J.W.); (Y.S.); (F.C.)
| | - Meng Sun
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu 802-8577, Japan;
| | - Bing Liu
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; (J.W.); (Y.L.); (B.X.); (M.L.); (J.W.); (Y.S.); (F.C.)
- Correspondence:
| |
Collapse
|
10
|
Yetilmezsoy K, Ilhan F, Kiyan E, Bahramian M. A comprehensive techno-economic analysis of income-generating sources on the conversion of real sheep slaughterhouse waste stream into valorized by-products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114464. [PMID: 35026713 DOI: 10.1016/j.jenvman.2022.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The present analysis was conducted as the first research to assess the techno-economic viability of the value-added by-products (struvite, blood meal, bone meal, and raw sheepskin) from a medium-scale sheep slaughterhouse facility with a slaughtering capacity of 300 sheep per day. For this aim, a comparative technical and economic feasibility analysis was performed to assess the synergistic use of slaughterhouse-oriented rendering wastes and struvite recovery from real sheep abattoir effluent within the framework of detailed cost breakdown, break-even point, and payback period analyses. The experimental findings clearly showed that under the optimal conditions (chemical combination of MgCl2.6H2O + NaH2PO4.2H2O, a molar ratio of Mg2+:NH4+-N:PO43--P = 1.2:1:1, a reaction pH of 9.0, an initial ammonium concentration of 240 mg NH4+-N/L, and a reaction time of 15 min), struvite precipitation could effectively remove about 73%, 64%, 59%, and 82% of NH4+-N, TCOD, SCOD, and color, respectively, from the real sheep slaughterhouse waste stream. Based on various up-to-date techno-economic items considered within the break-even point analysis, the sheep slaughterhouse facility was estimated to achieve the targeted net income (€100/day) for any selling prices of €1041.30/ton, €640.05/ton, €263.72/ton, and €1.012/hide, respectively, for struvite, blood meal, bone meal, and raw sheepskin. Steel construction and chemicals were determined as the most costly components for CAPEX (capital expenditures) and OPEX (operating expenditures), respectively, and selling prices of bone meal and raw sheepskin were found to be the most critical income items on the profitability of the slaughterhouse facility. Co-monetary assessment of the struvite process and valorized compounds corroborated the economic viability of the proposed project with the payback periods of about 6.3 and 5.5 years, respectively, for the current market and the profit-oriented conditions without subsidy. The findings of this feasibility analysis, as the first of its own, could be used as guideline for simplifying the decision-making with regards to the feasibility of similar facilities and commercialization of profitable by-products.
Collapse
Affiliation(s)
- Kaan Yetilmezsoy
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Fatih Ilhan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Emel Kiyan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey.
| | - Majid Bahramian
- School of Chemical and Bioprocess Engineering, Faculty of Architecture and Engineering, University College Dublin, Belfiled, Dublin 4, Ireland.
| |
Collapse
|
11
|
Gowd SC, Ramakrishna S, Rajendran K. Wastewater in India: An untapped and under-tapped resource for nutrient recovery towards attaining a sustainable circular economy. CHEMOSPHERE 2022; 291:132753. [PMID: 34780737 DOI: 10.1016/j.chemosphere.2021.132753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/21/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Wastewater (WW) contains nitrogen (N) and phosphorus (P), where N oxidizes to nitrate followed by denitrification to release N2 and P is accumulated in sludge. Higher concentrations of N and P leads to eutrophication and algal blooming, thereby threatening the aquatic life systems. Such nutrients could be potentially recovered avoiding the fertilizer requirements. Distinct nutrient recovery systems have been demonstrated including chemical precipitation, ion-exchange, adsorption, bio-electrochemical systems, and biological assimilation at various scales of volumes. This study focusses on the nutrient recovery possibility from wastewater in India. The resource estimation analysis indicates that at 80% recovery, 1 million liters per day (MLD) of sewage can generate 17.3-kg of struvite using chemical precipitation. When compared with traditional fertilizers, nutrient recovery from sewage has the potential to avoid 0.38-Mt/a in imports. Replacing conventional fertilizer with struvite recovered from WW avoids 663.2 kg CO2eq/ha in emissions (53%). Prevailing WW treatment looks at maintaining the discharging standards while recovering nutrients is an advanced option for a self-reliant and sustainable circular economy. However, more detailed assessments are necessary from techno-economic and environmental perspective in realizing these technologies at an industrial scale.
Collapse
Affiliation(s)
- Sarath C Gowd
- Department of Environmental Science, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore.
| | - Karthik Rajendran
- Department of Environmental Science, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India.
| |
Collapse
|
12
|
Li X, Wu S, Yang C, Zeng G. Microalgal and duckweed based constructed wetlands for swine wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2020; 318:123858. [PMID: 32732065 DOI: 10.1016/j.biortech.2020.123858] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetlands for swine wastewater treatment have been one of the most exciting research topics. Usually hydrophytes based constructed wetlands could not adapt well to high concentration of ammonia nitrogen in swine wastewater, while microalgal and duckweed based constructed wetlands are promising for the nutrient removal. In this critical review, the important roles of microalgae and duckweeds played in wastewater treatment in constructed wetlands were first summarized. Performances including biomass growth, nutrient removal capacities and mechanisms of microalgal and duckweed based constructed wetlands were reviewed for swine wastewater treatment. Challenges for the applications of constructed wetlands including microalgal and duckweed based ones were discussed which includes a better understanding and utilization of synergistic effects among microalgae and duckweeds, difficulty and costs in harvesting biomass, applications in various field conditions including low temperatures, and selections of various types of microalgal and duckweed species. Future research needs were also proposed accordingly.
Collapse
Affiliation(s)
- Xiang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan 410001, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
13
|
Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. SUSTAINABILITY 2020. [DOI: 10.3390/su12187538] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The abatement of nutrient compounds from aqueous waste and wastewater is currently a priority issue. Indeed, the uncontrolled discharge of high levels of nutrients into water bodies causes serious deteriorations of environmental quality. On the other hand, the increasing request of nutrient compounds for agronomic utilizations makes it strictly necessary to identify technologies able to recover the nutrients from wastewater streams so as to avoid the consumption of natural resources. In this regard, the removal and recovery of nitrogen and phosphorus from aqueous waste and wastewater as struvite (MgNH4PO4·6H2O) represents an attractive approach. Indeed, through the struvite precipitation it is possible to effectively remove the ammonium and phosphate content of many types of wastewater and to produce a solid compound, with only a trace of impurities. This precipitate, due to its chemical characteristics, represents a valuable multi-nutrients slow release fertilizer for vegetables and plants growth. For these reasons, the struvite precipitation technology constantly progresses on several aspects of the process. This manuscript provides a comprehensive review on the recent developments in this technology for the removal and recovery of nutrients from aqueous waste and wastewater. The theoretical background, the parameters, and the operating conditions affecting the process evolution are initially presented. After that, the paper focuses on the reagents exploitable to promote the process performance, with particular regard to unconventional low-cost compounds. In addition, the development of reactors configurations, the main technologies implemented on field scale, as well as the recent works on the use of struvite in agronomic practices are presented.
Collapse
|