1
|
Sánchez-Castro I, Molina L, Prieto-Fernández MÁ, Segura A. Past, present and future trends in the remediation of heavy-metal contaminated soil - Remediation techniques applied in real soil-contamination events. Heliyon 2023; 9:e16692. [PMID: 37484356 PMCID: PMC10360604 DOI: 10.1016/j.heliyon.2023.e16692] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/28/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Most worldwide policy frameworks, including the United Nations Sustainable Development Goals, highlight soil as a key non-renewable natural resource which should be rigorously preserved to achieve long-term global sustainability. Although some soil is naturally enriched with heavy metals (HMs), a series of anthropogenic activities are known to contribute to their redistribution, which may entail potentially harmful environmental and/or human health effects if certain concentrations are exceeded. If this occurs, the implementation of rehabilitation strategies is highly recommended. Although there are many publications dealing with the elimination of HMs using different methodologies, most of those works have been done in laboratories and there are not many comprehensive reviews about the results obtained under field conditions. Throughout this review, we examine the different methodologies that have been used in real scenarios and, based on representative case studies, we present the evolution and outcomes of the remediation strategies applied in real soil-contamination events where legacies of past metal mining activities or mine spills have posed a serious threat for soil conservation. So far, the best efficiencies at field-scale have been reported when using combined strategies such as physical containment and assisted-phytoremediation. We have also introduced the emerging problem of the heavy metal contamination of agricultural soils and the different strategies implemented to tackle this problem. Although remediation techniques used in real scenarios have not changed much in the last decades, there are also encouraging facts for the advances in this field. Thus, a growing number of mining companies publicise in their webpages their soil remediation strategies and efforts; moreover, the number of scientific publications about innovative highly-efficient and environmental-friendly methods is also increasing. In any case, better cooperation between scientists and other soil-related stakeholders is still required to improve remediation performance.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Lázaro Molina
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - María-Ángeles Prieto-Fernández
- Misión Biolóxica de Galicia (CSIC), Sede Santiago de Compostela, Avda de Vigo S/n. Campus Vida, 15706, Santiago de Compostela, Spain
| | - Ana Segura
- Estación Experimental Del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
2
|
Proshad R, Uddin M, Idris AM, Al MA. Receptor model-oriented sources and risks evaluation of metals in sediments of an industrial affected riverine system in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156029. [PMID: 35595137 DOI: 10.1016/j.scitotenv.2022.156029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Toxic metals in river sediments may represent significant ecological concerns, although there has been limited research on the source-oriented ecological hazards of metals in sediments. Surface sediments from an industrial affected Rupsa River were utilized in this study to conduct a complete investigation of toxic metals with source-specific ecological risk assessment. The findings indicated that the average concentration of Ni, Cr, Cd, Zn, As, Cu, Mn and Pb were 50.60 ± 10.97, 53.41 ± 7.76, 3.25 ± 1.73, 147.76 ± 36.78, 6.41 ± 1.85, 59.78 ± 17.77, 832.43 ± 71.56 and 25.64 ± 7.98 mg/kg, respectively and Cd, Ni, Cu, Pb and Zn concentration were higher than average shale value. Based on sediment quality guidelines, the mean effective range median (ERM) quotient (1.29) and Mean probable effect level (PEL) quotient (2.18) showed medium-high contamination in sediment. Ecological indexes like toxic risk index (20.73), Nemerow integrated risk index (427.59) and potential ecological risk index (610.66) posed very high sediment pollution. The absolute principle component score-multiple linear regression (APCS-MLR) and positive matrix factorization (PMF) model indicated that Zn (64.21%), Cd (51.58%), Cu (67.32%) and Ni (58.49%) in APCS-MLR model whereas Zn (49.5%), Cd (52.7%), Cu (57.4%) and Ni (44.6%) in PMF model were derived from traffic emission, agricultural activities, industrial source and mixed sources. PMF model-based Nemerow integrated risk index (NIRI) reported that industrial emission posed considerable and high risks for 87.27% and 12.72% of sediment samples. This work will provide a model-based guidelines for identifying and assessing metal sources which would be suitable for mitigating future pollution hazards in Riverine sediments in Bangladesh.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minhaz Uddin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia.
| | - Mamun Abdullah Al
- University of Chinese Academy of Sciences, Beijing 100049, China; Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
3
|
Baos R, Cabezas S, González MJ, Jiménez B, Delibes M. Eurasian otter (Lutra lutra) as sentinel species for the long-term biomonitoring of the Guadiamar River after the Aznalcóllar mine spill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149669. [PMID: 34525684 DOI: 10.1016/j.scitotenv.2021.149669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Accidents at mines involving stored tailings have produced catastrophic environmental damage. In April 1998 the dam of the Aznalcóllar mine tailings pond in the surroundings of the Doñana National Park (southwestern Spain) broke, discharging into the Guadiamar River more than 6 million m3 of toxic mud and acidic water with high concentrations of heavy metals and arsenic. We used the Eurasian otter (Lutra lutra) as sentinel species to assess the potential impact of the toxic spill on the river ecosystems and their recovery with time by studying the spatial and temporal variation (1999-2003, 2006) of selected trace element (Cu, Zn, Cd, Pb and As) concentrations in feces. Throughout the sampling period, the highest heavy metal and As levels were found in the most spill-affected reaches of the Guadiamar River (i.e., the Middle and, to a lesser extent, the Lower reaches), pointing out the mining accident as the main origin of the contamination. Overall, levels of trace elements decreased with the time elapsed since the toxic spill, except for Cd (F1,352 = 0.29, P = 0.59). However, rebounds for some elements (Pb, As, and Cu) were also observed, especially in the Middle and Lower reaches of the river, which might be attributed to the residual contamination in abiotic compartments and/or new inputs from industrial and agricultural activities in the nearby areas. Concentrations were relatively high when compared to those reported for both our reference area (Guadalete River) and other metal-polluted zones. We found that the estimated amounts of Pb and As ingested during the first years after the spill in the Guadiamar Middle reach would be high enough to cause reproductive issues. This could affect the local population recovery, although evidence on distribution range and numbers suggests otherwise, with thriving populations at regional scale. Our results support the role of otters as sentinel species for biomonitoring contaminants and thus to evaluate fluvial ecosystem health.
Collapse
Affiliation(s)
- Raquel Baos
- Department of Conservation Biology, Doñana Biological Station (EBD-CSIC), Seville, Spain.
| | - Sonia Cabezas
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - María José González
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Madrid, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Madrid, Spain
| | - Miguel Delibes
- Department of Conservation Biology, Doñana Biological Station (EBD-CSIC), Seville, Spain
| |
Collapse
|
4
|
Budianta W. Heavy metal pollution and mobility of sediment in Tajum River caused by artisanal gold mining in Banyumas, Central Java, Indonesia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8585-8593. [PMID: 33067785 DOI: 10.1007/s11356-020-11157-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The heavy metals Cu, Pb, Zn, and Cd in the stream sediment of the Tajum River were studied based on 12 sediment samples obtained from upstream to downstream. The artisanal mining activities in the study area generated mining processing waste (tailing) and are the primary source of heavy metal pollution. The samples were analyzed for metal concentration as well as metal mobility based on sequential extraction analysis. Heavy metal analysis for the concentration of the metals showed that the value of Cu, Pb, Zn, and Cd in sediment samples transcends the mean crust. The change of the heavy metal concentrations in stream sediment between the upstream and downstream areas showed that higher levels were located near mining activities in upstream and that these decreased with distance to downstream. The result of the sequential extraction study revealed that Cu and Pb were more found in the exchangeable and carbonate fraction of about 26% and 24%. Meanwhile, Zn and Cd were present in the Fe-Mn oxide, an organic and residual fraction of about 90% and 85%, respectively. The mobility factor assessment revealed that the heavy metals investigated had an average mobility factor of 25.89%, 23.9%, 14.4 %, and 9.24% for Cu, Pb, Zn, and Cd, respectively. Overall, Zn and Cd in sediment in the study area were less mobile compared with Cu and Pb.
Collapse
Affiliation(s)
- Wawan Budianta
- Department of Geological Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika 2 Kampus UGM, Yogyakarta, Indonesia.
| |
Collapse
|
5
|
Shu J, Lei T, Deng Y, Chen M, Zeng X, Liu R. Metal mobility and toxicity of reclaimed copper smelting fly ash and smelting slag. RSC Adv 2021; 11:6877-6884. [PMID: 35423186 PMCID: PMC8694897 DOI: 10.1039/d0ra09704g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/09/2021] [Indexed: 12/20/2022] Open
Abstract
Copper is a nonferrous metal closely connected to humans. Approximately 40% of copper is produced by reclaimed copper smelting (RCS). Reclaimed copper smelting fly ash and smelting slag are generated during the RCS process, posing a serious threat to the ecosystem and environment as they contain many heavy metals, such as Cu and Zn. In this study, the metal mobility and toxicity of RCS fly ash and smelting slag were analyzed using standard leaching toxicity procedures, sequential extraction procedures, and bioavailability tests. The results showed that the main phases of RCS fly ash were Cu2(OH)3Cl, FeCl2·2H2O, CuS2, C, CuO, Cu, Ca2SiO4, ZnClO42, Zn(OH)2·0.5H2O, and KFeCl3, and those for smelting slag were SiO2, CaCO3, SiS2, CaAl2Si2O8·4H2O, Cu4O3, CuO, ZnO, NiSO4·6H2O, AlPO4, and Na3Mn(PO4)(CO)3. These two slags contain high contents of Cu, Zn and Fe and trace amounts of heavy metals, such as Ba, Be, Cd, Cr, Ni, As, Pb, Au, Se and Sb. RCS fly ash is classified as hazardous waste in both China and the USA as the toxic leaching concentrations of Pb and Cd exceed the thresholds of 5 and 1 mg L−1. Cu and Zn contained in these two slags can easily be released into the environment, although the residual fraction of Cu and Zn was found to be higher than 65%. Additionally, RCS fly ash and smelting slag also show significant biohazardous potential as the EDTA- and DTPA-extractable Zn, Cu and Se of these two residues are considerably high. The results described above could provide reclaimed copper smelting companies and governments with a better understanding of the risk of RCS fly ash and smelting slag, urging them to stop the slag from harming ecosystems and humans. Copper is a nonferrous metal closely connected to humans.![]()
Collapse
Affiliation(s)
- Jiancheng Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST)
- Ministry of Education
- Southwest University of Science and Technology
- Mianyang
- China
| | - Tianya Lei
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST)
- Ministry of Education
- Southwest University of Science and Technology
- Mianyang
- China
| | - Yaling Deng
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST)
- Ministry of Education
- Southwest University of Science and Technology
- Mianyang
- China
| | - Mengjun Chen
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST)
- Ministry of Education
- Southwest University of Science and Technology
- Mianyang
- China
| | - Xiangfei Zeng
- Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST)
- Ministry of Education
- Southwest University of Science and Technology
- Mianyang
- China
| | - Renlong Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing
- China
| |
Collapse
|
6
|
Almeida LC, da Silva Júnior JB, Dos Santos IF, de Carvalho VS, de Santana Santos A, Hadlich GM, Ferreira SLC. Assessment of toxicity of metals in river sediments for human supply: Distribution, evaluation of pollution and sources identification. MARINE POLLUTION BULLETIN 2020; 158:111423. [PMID: 32753207 DOI: 10.1016/j.marpolbul.2020.111423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Ten surface sediments collected from Joanes River, Bahia, Brazil in rainy and drought periods in 2019 were evaluated according to the enrichment factor (EF), potential ecological risk index (RI), potential contamination index (PCI), pollution load index (PLI), and index of geoaccumulation (Igeo). Initially the dry sediment was subjected to granulometric analysis and determination of the concentration of organic matter. Then, the samples were digested in HNO3 and analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) to determine the metals cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn). Zn and Cu were classified in that order as the most contaminated elements in most sediment. Comparison of the total metal concentrations with the threshold (TELs) and probable (PELs) effect levels in sediment quality guidelines suggested a more worrisome situation for Zn (648.83-1415.90 μg g-1; PELZn = 315 μg g-1), of which concentrations were occasionally associated with adverse biological effects in four sediments, followed by Cu in five sediments during dry and rainy periods; while adverse effects were rarely associated with Cd, Cr, Ni, and Pb. In another evaluation, Cd, Cu, Cr, and Zn could be considered the most dangerous in the entire river, as they were classified in the high levels of contamination by the PCI, associated with serious adverse effects in most samples. In an assessment regarding the ecological risks in the study environment, the sediment samples remained below the limit established by the risk index (IR). The Zn presented moderately severe enrichment (6.78-11.83) in all the collection stations in the dry and rainy periods, followed by the Cd that presented moderate enrichment (2.23-4.17), whose values exceeded almost 1000 times the background at one site. Through the PCA it was possible to evidence the existing correlation between metals, organic matter, and silt and clay fraction. The results obtained in the PCA represented more than 80% of the variance between the data. The environmental risk assessment revealed a significant increase in the risk associated with metals during the rainy season. This is probably due to the greater supply of organic matter from the leaching of the margins.
Collapse
Affiliation(s)
- Lucas Cintra Almeida
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-270 Salvador, BA, Brazil
| | - Jucelino Balbino da Silva Júnior
- Postgraduate Program in Geochemistry: Petroleum and Environment (POSPETRO), Geoscience Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-290 Salvador, BA, Brazil.
| | | | - Vanessa Sales de Carvalho
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-270 Salvador, BA, Brazil
| | - Adilson de Santana Santos
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-270 Salvador, BA, Brazil
| | - Gisele Mara Hadlich
- Postgraduate Program in Geochemistry: Petroleum and Environment (POSPETRO), Geoscience Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-290 Salvador, BA, Brazil
| | - Sérgio Luís Costa Ferreira
- Postgraduate Program in Chemistry, Chemistry Institute, Federal University of Bahia (UFBA), Street Barão de Jeremoabo, s/n, 40170-270 Salvador, BA, Brazil
| |
Collapse
|