1
|
Khandelwal A, Sugavanam R, Ramakrishnan B, Dutta A, Varghese E, Banerjee T, Nain L, Singh SB, Singh N. Bio-polysaccharide composites mediated degradation of polyaromatic hydrocarbons in a sandy soil using free and immobilized consortium of Kocuria rosea and Aspergillus sydowii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80005-80020. [PMID: 35220535 DOI: 10.1007/s11356-022-19252-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Based on our previous study in minimal medium, Kocuria rosea and Aspergillus sydowii were identified as the best microbes for degradation of mixture of polyaromatic hydrocarbons (PAHs). The present study reports PAH degradation potential of these microbes in free and immobilized form. PAHs were extracted using QuEChERS-mediated process followed by quantification by high performance liquid chromatography. The microbial consortium of Kocuria rosea + Aspergillus sydowii was formulated in three bio-formulations, namely (i) bentonite-alginate composite beads; (ii) water dispersible granule composite using guar gum-nanobentonite; and (iii) composites of carboxymethyl cellulose-bentonite and were applied in PAH fortified (100 µg g-1) sandy loam soil. Results suggested that degradation data fitted well to first order kinetics as in most of the cases, the values of correlation coefficient (r) were > 0.95. The half-life (t1/2) values for PAHs in the uninoculated control soil were: naphthalene (10.43 d), fluorene (22.43 d), phenanthrene (24.64 d), anthracene (38.47 d), and pyrene (34.34 d). Inoculation of soil with free culture microbial consortium (without or with nutrient) and bio-formulation of degrading cultures enhanced degradation of all PAHs and half-life values were significantly reduced for each PAH: naphthalene (1.76-2.00 d), fluorene (2.52-6.65 d), phenanthrene (4.61-6.37 d), anthracene (9.01-12.22 d), and pyrene (10.98-15.55 d). Among different bio-formulations, guar gum-nanobentonite-based composite exhibited better efficacy for degradation of naphthalene, fluorene, phenanthrene, anthracene, and pyrene. The addition of microbial consortium in PAH fortified soil increased 16S rRNA gene copies of Alphaproteobacteria and Bacteroidetes, compared to the uninoculated, PAH-fortified control. The microbial functional gene assays showed that the gene copies of amoA, nirK, nirS, and anammox increased, suggesting nitrogen regulation in the PAH-fortified soil.
Collapse
Affiliation(s)
- Ashish Khandelwal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
- Division of Environment Science, ICAR- Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Ramya Sugavanam
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | | | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Eldho Varghese
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute, Kochi, 682 018, Kerala, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Shashi Bala Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
2
|
Mary Celin S, Sharma B, Bhanot P, Kalsi A, Sahai S, Tanwar RK. Trends in environmental monitoring of high explosives present in soil/sediment/groundwater using LC-MS/MS. MASS SPECTROMETRY REVIEWS 2022:e21778. [PMID: 35657034 DOI: 10.1002/mas.21778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination by explosives occurs due to improper handling and disposal procedures. Explosives and their transformation products pose threat to human health and the ecosystem. Trace level detection of explosives present in different environmental matrices is a challenge, due to the interference caused by matrix components and the presence of cocontaminants. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) is an advanced analytical tool, which is ideal for quantitative and qualitative detection of explosives and its metabolites at trace levels. This review aims to showcase the current trends in the application of LC-MS/MS for detecting explosives present in soil, sediment, and groundwater with detection limits ranging from nano to femtogram levels. Specificity and advantages of using LC-MS/MS over conventional analytical methods and various processing methods and techniques used for sample preparation are discussed in this article. Important application aspects of LC-MS/MS on environmental monitoring include site characterization and degradation evaluation. Studies on qualitative and quantitative LC-MS/MS analysis in determining the efficiency of treatment processes and contamination mapping, optimized conditions of LC and MS/MS adopted, role of different ionization techniques and mass analyzers in detection of explosives and its metabolites, relative abundance of various product ions formed on dissociation and the levels of detection achieved are reviewed. Ionization suppression, matrix effect, additive selection are some of the major factors which influence MS/MS detection. A summary of challenges and future research insights for effective utilization of this technique in the environmental monitoring of explosives are presented.
Collapse
Affiliation(s)
- Senthil Mary Celin
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Bhumika Sharma
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Pallvi Bhanot
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Anchita Kalsi
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Sandeep Sahai
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Rajesh Kumar Tanwar
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| |
Collapse
|
3
|
Aamir Khan M, Sharma A, Yadav S, Celin SM, Sharma S. A sketch of microbiological remediation of explosives-contaminated soil focused on state of art and the impact of technological advancement on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation. CHEMOSPHERE 2022; 294:133641. [PMID: 35077733 DOI: 10.1016/j.chemosphere.2022.133641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
When high-energy explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6-trinitrotoluene (TNT) are discharged into the surrounding soil and water during production, testing, open dumping, military, or civil activities, they leave a toxic footprint. The US Environmental Protection Agency has labeled RDX as a potential human carcinogen that must be degraded from contaminated sites quickly. Bioremediation of RDX is an exciting prospect that has received much attention in recent years. However, a lack of understanding of RDX biodegradation and the limitations of current approaches have hampered the widespread use of biodegradation-based strategies for RDX remediation at contamination sites. Consequently, new bioremediation technologies are required to enhance performance. In this review, we explore the requirements for in-silico analysis for producing biological models of microbial remediation of RDX in soil. On the other hand, potential gene editing methods for getting the host with target gene sequences responsible for the breakdown of RDX are also reported. Microbial formulations and biosensors for detection and bioremediation are also briefly described. The biodegradation of RDX offers an alternative remediation method that is both cost-effective and ecologically acceptable. It has the potential to be used in conjunction with other cutting-edge technologies to further increase the efficiency of RDX degradation.
Collapse
Affiliation(s)
- Mohd Aamir Khan
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Sonal Yadav
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - S Mary Celin
- Centre for Fire, Explosives and Environment Safety, Defence Research & Development Organization, Brig. Mazumdar Road, Delhi, 110 054, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
4
|
Li J, Yang X, Lai JL, Zhang Y, Luo XG, Zhao SP, Zhu YB. Characteristics of RDX degradation and the mechanism of the RDX exposure response in a Klebsiella sp. strain. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Vargas-Suárez M, Savín-Gámez A, Domínguez-Malfavón L, Sánchez-Reyes A, Quirasco-Baruch M, Loza-Tavera H. Exploring the polyurethanolytic activity and microbial composition of landfill microbial communities. Appl Microbiol Biotechnol 2021; 105:7969-7980. [PMID: 34554272 DOI: 10.1007/s00253-021-11571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The microbial composition of polyurethane degrading communities has been barely addressed, and it is unknown if microenvironmental conditions modify its composition, affecting its biodegradative capacity. The polyurethanolytic activity and taxonomic composition of five microbial communities, selected by enrichment in the polyether-polyurethane-acrylic (PE-PU-A) coating PolyLack®, from deteriorated PU foams collected at different microenvironments in a municipal landfill (El Bordo Poniente, BP) were explored. All BP communities grew similarly in PolyLack® as the sole carbon source, although BP1, BP4, and BP5 showed better performance than BP2 and BP7. FTIR spectroscopy showed that ester, urethane, ether, aromatic and aliphatic groups, and the acrylate component were targets of the biodegradative activity. Extracellular esterase activity was higher at 5 days of cultivation and decreased at 21 days, while urease activity showed the opposite. Microbial composition analysis, assessed by 16S rDNA V3 region PCR-DGGE, revealed a preponderance of Rhizobiales and Micrococcales. The reported PU-degrading genera Paracoccus, Acinetobacter, and Pseudomonas were identified. In contrast, Advenella, Bordetella, Microbacterium, Castellaniella, and Populibacterium, some of them xenobiotics degraders, can be considered potentially PU-degrading genera. Correspondence analysis identified independent groups for all communities, except the BP4 and BP5. Although partial taxonomic redundancy was detected, unique OTUs were identified, e.g., three members of the Weeksellaceae family were present only in the BP4/BP5 group. These results suggest that the microenvironmental conditions where the landfill microbial communities were collected shaped their taxonomical composition, impacting their PE-PU biodegradative capacities. These BP communities represent valuable biological material for the treatment of PU waste and other xenobiotics. KEY POINTS: • Landfill microbial communities display slightly different capacities for growing in polyether-polyurethane-acrylic. • Ester, urethane, ether, aromatic, aliphatic, and acrylate groups were attacked. • Esterase activity was more significant at early culture times while urease activity at latter. • Landfill microenvironments shape partial taxonomical redundancy in the communities. • Best communities' performance seems to be related to unique members' composition.
Collapse
Affiliation(s)
- Martín Vargas-Suárez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Alba Savín-Gámez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Lilianha Domínguez-Malfavón
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Maricarmen Quirasco-Baruch
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico
| | - Herminia Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ave. Universidad 3000, Col. UNAM, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Sharma K, Sharma P, Celin SM, Rai PK, Sangwan P. Degradation of high energetic material hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a microbial consortium using response surface methodological approach. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractSoil and water get polluted with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) during its manufacturing, storage and use for civil and military purposes. RDX has toxic effects on living and non-living environment and is a recalcitrant compound. Therefore, the remediation of this compound is necessary. Microbial degradation of RDX can be a suitable and sustainable option to reduce its deleterious impact on the environment. Therefore, the optimization for degradation of energetic munition compound RDX employing the consortium of native bacterial species, isolated from an actual contaminated site, was performed. The experiment was planned with three independent variables (initial RDX concentration, inoculum size of microbes, and duration of the experiment) and three dependent variables (percentage removal of RDX, optical density, and nitrite release). Both independent and dependent variables were analyzed by the response surface methodology (RSM) using the Box–Behnken design. The statistical analysis using analysis of variance (ANOVA) depicted a high regression coefficient, R2 = 0.9881 with the statistically significant p-value fitted into a quadratic regression model for percentage removal of RDX. Results showed an initial RDX concentration of 40 mg/L, inoculation size 6 mL and a time duration of 12 days was optimal for the reduction of RDX up to 80.4%.
Collapse
|
7
|
Núñez-Delgado A, Zhou Y, Anastopoulos I, Shaaban M. Editorial: New Research on Soil Degradation and Restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110851. [PMID: 32561024 DOI: 10.1016/j.jenvman.2020.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The Virtual Special Issue (VSI) "New Research on Soil Degradation and Restoration" was proposed by the Guest-Editors (the authors of this editorial piece) to Journal of Environmental Management taking into account the following aspects: (a) Firstly, soil degradation is a main issue all over the world; (b) Secondly, physical, chemical and biological degradation of soil environments need detailed research, also going deeper in some new aspects poorly covered up to now; and (c) Similarly, new quality research on restoration of degraded soils, dumping sites, different areas affected by mining activities, and so on, would be clearly useful in order to prevent and/or solve critical environmental hazards. As a result, 110 manuscripts were submitted to the VSI by authors from around the world, and near 50 high quality works were finally published. The Guest-Editors of the VSI consider that the papers published will be of great interest for researchers working in this field, as well as for the overall community, as they include aspects clearly relevant at a global level.
Collapse
Affiliation(s)
- Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Univ. Santiago de Compostela, Engineering Polytechnic School, Campus Univ. S/n, 27002, Lugo, Spain.
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Ioannis Anastopoulos
- Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | | |
Collapse
|
8
|
Kalsi A, Celin SM, Sharma JG. Aerobic biodegradation of high explosive hexahydro-1,3,5- trinitro-1,3,5-triazine by Janibacter cremeus isolated from contaminated soil. Biotechnol Lett 2020; 42:2299-2307. [PMID: 32572651 DOI: 10.1007/s10529-020-02946-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To evaluate the ability of Janibacter cremeus a soil bacterium isolated from explosive contaminated site in degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and to study enzyme responsible for degradation. RESULTS The isolate exhibited 88% degradation of RDX in 30 days of incubation. The biodegradation process followed the first order kinetics. The half- life of RDX was calculated to be 11.088 days. The RDX degradation process was complemented by concomitant release of nitrite ions with 0.78 mol of nitrite released per mole of RDX. The metabolites; Trinitroso- RDX, diamino-RDX, trimino-RDX, bis- (hydroxymethyl) nitramine and methylenedintramine derivative, viz, methylene- N- (hydroxy- methyl)- hydroxylamine- N-(hydroxymethyl) nitroamine corresponding to the molecular weights 174, 162, 132, 122 and 167 Da respectively were also detected. Nitroreductase enzyme was found to be responsible for RDX degradation. CONCLUSION J. cremeus could degrade RDX as sole source of nitrogen, via three different pathways wherein, Nitroreductase enzyme was found to play a major role. The efficient degradation of RDX makes J. cremeus suitable in treatment of contaminated water and soil at field scale levels.
Collapse
Affiliation(s)
- Anchita Kalsi
- Centre for Fire Explosives and Environment Safety (CFEES), DRDO, Delhi, India
- Delhi Technological University, Delhi, India
| | - S Mary Celin
- Centre for Fire Explosives and Environment Safety (CFEES), DRDO, Delhi, India.
| | | |
Collapse
|