1
|
Kumar H, Dhalaria R, Kimta N, Guleria S, Upadhyay NK, Nepovimova E, Dhanjal DS, Sethi N, Manickam S. Curcumin: A Potential Detoxifier Against Chemical and Natural Toxicants. Phytother Res 2025. [PMID: 39853860 DOI: 10.1002/ptr.8442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025]
Abstract
The human body gets exposed to a variety of toxins intentionally or unintentionally on a regular basis from sources such as air, water, food, and soil. Certain toxins can be synthetic, while some are biological. The toxins affect the various parts of the body by activating numerous pro-inflammatory markers, like oxidative stresses, that tend to disturb the normal function of the organs ultimately. Nowadays, people use different types of herbal treatments, viz., herbal drinks that contain different spices for detoxification of their bodies. One such example is turmeric, the most commonly available spice in the kitchen and used across all kinds of households. Turmeric contains curcumin, which is a natural polyphenol. Curcumin is a medicinal compound with different biological activities, such as antioxidant, antineoplastic, anti-inflammatory, and antibacterial. Hence, this review gives a comprehensive insight into the promising potential of curcumin in the detoxification of heavy metals, carbon tetrachloride, drugs, alcohol, acrylamide, mycotoxins, nicotine, and plastics. The review encompasses diverse animal-based studies portraying curcumin's role in nullifying the different toxic effects in various organs of the body (especially the liver, kidney, testicles, and brain) by enhancing defensive signaling pathways, improving antioxidant enzyme levels, inhibiting pro-inflammatory markers activities and so on. Furthermore, this review also argues over curcumin's safety assessment for its utilization as a detoxifying agent.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | | | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Nidhi Sethi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sivakumar Manickam
- Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| |
Collapse
|
2
|
Yang N, Zhang Y, Yang N, Men C, Zuo J. Distribution characteristics and relationship of microplastics, phthalate esters, and bisphenol A in the Beiyun River basin of Beijing. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136190. [PMID: 39490169 DOI: 10.1016/j.jhazmat.2024.136190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Urban rivers are closely related to human life, and due to the widespread use of plastic products, rivers have become important carriers of pollutants such as microplastics (MP), phthalate esters (PAEs), and bisphenol A (BPA). However, our understanding of the distribution characteristics and relationships of MP, PAEs, and BPA in rivers is limited. In this study, MP, six PAEs and BPA were detected in the water and sediments of the Beiyun River basin. Polyvinyl chloride (PVC) was the most abundant type of microplastic, while di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most abundant PAEs. MP, PAEs, and BPA in both water and sediment showed positive correlations, with stronger correlations and higher pollution levels in sediment than in water. The tendency for PAE congeners to partition into sediments increased with a higher octanol-water partition coefficient (Kow). There was a significant positive correlation between the distribution tendency of ∑6PAEs and TOC in sediments with a pearson correlation coefficient of 0.717. Rivers with more frequent human activities and higher levels of urbanization in the vicinity had a higher abundance of various pollutants and a greater diversity of MP types.
Collapse
Affiliation(s)
- Nina Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanyan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Nijuan Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
| | - Cong Men
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrialpollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Zhou Y, Li S, Sun X, Wang J, Chen H, Xu Q, Ye H, Li S, Shi S, Zhang X. Preparation of novel magnetic ethylene glycol dimethacrylate-based molecularly imprinted polymer for rapid adsorption of phthalate esters from ethanol aqueous solution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124891. [PMID: 39241951 DOI: 10.1016/j.envpol.2024.124891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Phthalate esters (PAEs), as emerging pollutants, pose a serious threat to human health and have become a major concern in the fields of environmental protection and food safety. Selective adsorption using molecularly imprinted polymer (MIP) is feasible, but most MIPs use the potentially toxic methacrylic acid (MAA) as a functional monomer, along with other crosslinking agents. In this study, MIP adsorbent was prepared using only ethylene glycol dimethacrylate (EGDMA) as both the functional monomer and crosslinking agent, without the inclusion of MAA. The adsorbent was utilized for the adsorption of PAEs from an ethanol aqueous solution. The results showed that EGDMA-based MIP (EMIP) achieved better adsorption performance of PAEs than MAA-based MIP (MMIP) due to more interactions of EGDMA with PAEs than MAA with them. For the adsorption of dibutyl phthalate (DBP) using EMIP, 95% of the equilibrium adsorption capacity was achieved within the first 15 min. In the isotherm analysis, the theoretical maximum adsorption capacity of EMIP was obtained as high as 159.24 mg/g at 20 °C in an ethanol (10 v%) aqueous solution. Furthermore, the adsorption of EMIP was not affected by the pH of the solution. The adsorption process of EMIP followed the pseudo-second-order kinetic and Freundlich isotherm model. Ethanol had a significant impact on the adsorption of DBP, and the results of molecular simulation could validate this. In addition, the regeneration experiments indicated that EMIP could be recycled 5 times without significant performance change and had a high recovery efficiency of 94.55%.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Shunying Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaoya Sun
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Jun Wang
- Shanxi Kunming Tobacco Company Ltd., Shanxi, 030032, China
| | - Haoxiang Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Qiangqiang Xu
- Shandong Zhaojin Motian Company Ltd., Shandong, 265400, China
| | - Hong Ye
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shuangyang Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Shengpeng Shi
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Wang X, Cheng S, Zou P, Bao L, Ma G, Wei X, Yu H. Gas-phase and air-solid interface behavior of phthalate plasticizer and ozone: The influence of indoor mineral dust. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135344. [PMID: 39098205 DOI: 10.1016/j.jhazmat.2024.135344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Indoor environments serve as reservoirs for a variety of emerging pollutants (EPs), such as phthalates (PAE), with intricate interactions occurring between these compounds and indoor oxidants alongside dust particles. However, the precise mechanisms governing these interactions and their resulting environmental implications remain unclear. By theoretical simulations, this work uncovers multi-functional compounds and high oxygen molecules as important products arising from the interaction between DEP/DEHP and O3, which are closely linked to SOA formation. Further analysis reveals a strong affinity of DEP/DEHP for mineral dust surfaces, with an adsorption energy of 22.11/30.91 kcal mol-1, consistent with a higher concentration of DEHP on the dust surface. Importantly, mineral particles are found to inhibit every step of the reaction process, albeit resulting in lower product toxicity compared to the parent compounds. Thus, timely removal of dust in an indoor environment may reduce the accumulation and residue of PAEs indoors, and further reduce the combined exposure risk produced by PAEs-dust. This study aims to enhance our understanding of the interaction between PAEs and SOA formation, and to develop a fundamental reaction model at the air-solid surface, thereby shedding light on the microscopic behaviors and pollution mechanisms of phthalates on indoor dust surfaces.
Collapse
Affiliation(s)
- Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Sisi Cheng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pengcheng Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Bao
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
5
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
6
|
Li X, Zheng N, Zhang W, An Q, Ji Y, Chen C, Wang S, Peng L. Comprehensive assessment of phthalates in indoor dust across China between 2007 and 2019: Benefits from regulatory restrictions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123147. [PMID: 38101532 DOI: 10.1016/j.envpol.2023.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/18/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
China is the largest producer and consumer of phthalates in the world. However, it remains unclear whether China's phthalate restrictions have alleviated indoor phthalate pollution. We extracted the concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) in indoor dust at 2762 sites throughout China between 2007 and 2019 from the published literature. Based on these data, we investigated the effects of phthalate restrictions and environmental factors on the temporal-spatial distribution and sources of phthalates and estimated human exposure and risk of phthalates. The results revealed that the mean concentrations of phthalates in indoor dust throughout China decreased in the following order: DEHP > DBP > DIBP > DMP > DEP > BBP. The concentrations of six phthalates were generally higher in northern and central-western China than in southern regions. BBP and DEHP concentrations decreased by 73.5% and 17.9%, respectively, from 2007 to 2019. Sunshine was a critical environmental factor in reducing phthalate levels in indoor dust. Polyvinyl chloride materials, personal care products, building materials, and furniture were the primary sources of phthalates in indoor dust. The phthalates in indoor dust posed the most significant threat to children and older adults. This study provides a picture of phthalate pollution, thus supporting timely and effective policies and legislation.
Collapse
Affiliation(s)
- Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| | - Wenhui Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Yining Ji
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Liyuan Peng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130012, China
| |
Collapse
|
7
|
Dueñas-Moreno J, Mora A, Kumar M, Meng XZ, Mahlknecht J. Worldwide risk assessment of phthalates and bisphenol A in humans: The need for updating guidelines. ENVIRONMENT INTERNATIONAL 2023; 181:108294. [PMID: 37935082 DOI: 10.1016/j.envint.2023.108294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Phthalates and bisphenol A (BPA) are compounds widely used as raw materials in the production of plastics, making them ubiquitous in our daily lives. This results in widespread human exposure and human health hazards. Although efforts have been conducted to evaluate the risk of these compounds in diverse regions around the world, data scattering may mask important trends that could be useful for updating current guidelines and regulations. This study offers a comprehensive global assessment of human exposure levels to these chemicals, considering dietary and nondietary ingestion, and evaluates the associated risk. Overall, the exposure daily intake (EDI) values of phthalates and BPA reported worldwide ranged from 1.11 × 10-7 to 3 700 µg kg bw-1 d-1 and from 3.00 × 10-5 to 6.56 µg kg bw-1 d-1, respectively. Nevertheless, the dose-additive effect of phthalates has been shown to increase the EDI up to 5 100 µg kg bw-1 d-1, representing a high risk in terms of noncarcinogenic (HQ) and carcinogenic (CR) effects. The worldwide HQ values of phthalates and BPA ranged from 2.25 × 10-7 to 3.66 and from 2.74 × 10-7 to 9.72 × 10-2, respectively. Meanwhile, a significant number of studies exhibit high CR values for benzyl butyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP). Moreover, DEHP has shown the highest maximum mean CR values for humans in numerous studies, up to 179-fold higher than BBP. Despite mounting evidence of the harmful effects of these chemicals at low-dose exposure on animals and humans, most regulations have not been updated. Thus, this article emphasizes the need for updating guidelines and public policies considering compelling evidence for the adverse effects of low-dose exposure, and it cautions against the use of alternative plasticizers as substitutes for phthalates and BPA because of the significant gaps in their safety.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64700 Nuevo León, Mexico.
| |
Collapse
|
8
|
Stojić N, Pezo L, Lončar B, Pucarević M, Filipović V, Prokić D, Ćurčić L, Štrbac S. Prediction of the Impact of Land Use and Soil Type on Concentrations of Heavy Metals and Phthalates in Soil Based on Model Simulation. TOXICS 2023; 11:269. [PMID: 36977034 PMCID: PMC10057983 DOI: 10.3390/toxics11030269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The main objective of this study is to determine the possibility of predicting the impact of land use and soil type on concentrations of heavy metals (HMs) and phthalates (PAEs) in soil based on an artificial neural network model (ANN). Qualitative analysis of HMs was performed with inductively coupled plasma-optical emission spectrometry (ICP/OES) and Direct Mercury Analyzer. Determination of PAEs was performed with gas chromatography (GC) coupled with a single quadrupole mass spectrometry (MS). An ANN, based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) iterative algorithm, for the prediction of HM and PAE concentrations, based on land use and soil type parameters, showed good prediction capabilities (the coefficient of determination (r2) values during the training cycle for HM concentration variables were 0.895, 0.927, 0.885, 0.813, 0.883, 0.917, 0.931, and 0.883, respectively, and for PAEs, the concentration variables were 0.950, 0.974, 0.958, 0.974, and 0.943, respectively). The results of this study indicate that HM and PAE concentrations, based on land use and soil type, can be predicted using ANN.
Collapse
Affiliation(s)
- Nataša Stojić
- Faculty of Environmental Protection, Educons University, 21208 Sremska Kamenica, Serbia; (N.S.); (M.P.); (D.P.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Biljana Lončar
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (B.L.); (V.F.)
| | - Mira Pucarević
- Faculty of Environmental Protection, Educons University, 21208 Sremska Kamenica, Serbia; (N.S.); (M.P.); (D.P.)
| | - Vladimir Filipović
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (B.L.); (V.F.)
| | - Dunja Prokić
- Faculty of Environmental Protection, Educons University, 21208 Sremska Kamenica, Serbia; (N.S.); (M.P.); (D.P.)
| | - Ljiljana Ćurčić
- Faculty of Environmental Protection, Educons University, 21208 Sremska Kamenica, Serbia; (N.S.); (M.P.); (D.P.)
| | - Snežana Štrbac
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Adsorption of Phthalate Acid Esters by Activated Carbon: The Overlooked Role of the Ethanol Content. Foods 2022; 11:foods11142114. [PMID: 35885356 PMCID: PMC9323295 DOI: 10.3390/foods11142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Ethanol has great effects on the adsorption of phthalate acid esters (PAEs) on activated carbon (AC), which are usually overlooked and hardly studied. This study investigated the overlooked effects of ethanol on the adsorption of PAEs in alcoholic solutions. The adsorption capacities of dibutyl phthalate (DBP) on AC in solutions with ethanol contents of 30, 50, 70, and 100 v% were only 59%, 43%, 19%, and 10% of that (16.39 mg/g) in water, respectively. The ethanol content increase from 50 v% to 100 v% worsened the adsorption performances significantly with the formation of water–ethanol–DBP clusters (decreasing from 13.99 mg/g to 2.34 mg/g). The molecular dynamics simulation showed that the DBP tended to be distributed farther away from the AC when the ethanol content increased from 0 v% to 100 v% (the average distribution distance increased from 5.25 Å to 15.3 Å). The PAEs with shorter chains were more affected by the presence of ethanol than those with longer chains. Taking DBP as an example, the adsorption capacity of AC in ethanol (0.41 mg/g) is only 2.2% of that in water (18.21 mg/g). The application results in actual Baijiu samples showed that the adsorption of PAEs on AC had important effects on the Baijiu flavors.
Collapse
|
10
|
Zhang B, Ma L, Zhang Y, Qi K, Li C, Qi J. Impact of ozonated water disinfestation on soil fungal community composition in continuous ginger field. PLoS One 2022; 17:e0266619. [PMID: 35390087 PMCID: PMC8989316 DOI: 10.1371/journal.pone.0266619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to explore the impact of ozonated water (OW) disinfestation on soil fungal community composition in continuous ginger field. All soil samples were collected in continuous ginger field. There were two groups and 5 time points (0, 1, 3, 5, 9 day) in our study, including OW disinfestation treatment group (O3 group) and control group (CK group). Via internal transcribed spacer (ITS) sequencing and further analysis, the changes of fungal community composition were determined. As a result, at 0 and 9 days after aeration, the operational taxonomic units (OTUs) in O3 group were significantly higher than that in CK group. Compared with the CK group, in O3 group: the ACE and Chao1 index significantly increased on day 1, and the Shannon index significantly decreased while Simpson index significantly increased on day 0 after aeration. In O3 group, there were dynamic changes of top 10 abundance fungi from the genus-level and the growth of Trichoderma and Rhodotorula had been promoted while Hannaella was inhibited. In conclusion, OW disinfestation had complicated impacts on fungal communities in continuous ginger fields. The growth of Trichoderma and Rhodotorula has been promoted during disinfestation, which provided more reference information for soil OW disinfestation research.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory of Plant Virology, Jinan, Shandong, P. R. China
| | - Liguo Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory of Plant Virology, Jinan, Shandong, P. R. China
| | - Yueli Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory of Plant Virology, Jinan, Shandong, P. R. China
| | - Kai Qi
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory of Plant Virology, Jinan, Shandong, P. R. China
| | - Changsong Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory of Plant Virology, Jinan, Shandong, P. R. China
| | - Junshan Qi
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Province Key Laboratory of Plant Virology, Jinan, Shandong, P. R. China
| |
Collapse
|
11
|
Wen D, Guo X, Li Q, Fu R. Enhanced electrokinetically-delivered persulfate and alternating electric field induced thermal effect activated persulfate in situ for remediation of phenanthrene contaminated clay. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127199. [PMID: 34560487 DOI: 10.1016/j.jhazmat.2021.127199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Delivering persulfate (PS) efficiently into clay is an unsolved challenge. This study proposes a novel strategy with enhanced electrokinetically -delivery PS into clay by using PS for continuously flushing cathode to inhibit water electrolysis at cathode electrode. On this basis, a novel approach of heating soil by alternating current (AC) was used to thermally activate PS in situ. Results show that the mass transfer efficiency of PS by electroosmotic flow is about 20 times that by electromigration. Moreover, when PS was added in the anode chamber, using PS solution continuously flushing cathode created a relatively balanced the influent and effluent flow rates, significantly improving the mass transfer efficiency of PS. Compared to using NaNO3 solution flushing, a significant increase of 51.7% was achieved, reaching 78.8%, for the phenanthrene (PHE) average degradation rate in soil cell. In contrast, the best overall PHE removal rate was observed, reaching 87.8%, by a cycle strategy of enhanced electrokinetically -delivered PS followed by AC heating applied. Electron paramagnetic resonance spectroscopy analysis showed oxidative radicals (SO4∙-/•OH) were the major species responsible for enhanced PHE degradation. These results demonstrate that this cycle strategy is a viable method for remediation of polycyclic aromatic hydrocarbons in clay.
Collapse
Affiliation(s)
- Dongdong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaopin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management & Remediation of Soil & Groundwater, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
12
|
Ulucan-Altuntas K, Saleem M, Tomei G, Marotta E, Paradisi C. Atmospheric plasma-based approaches for the degradation of dimethyl phthalate (DMP) in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113885. [PMID: 34619592 DOI: 10.1016/j.jenvman.2021.113885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Cold plasma based treatment of contaminated water is becoming a promising novel green remediation option. This study assessed the performance of two different cold plasma reactors, using, respectively, a self-pulsing discharge (SPD) and a multipin corona discharge (MCD), in the degradation of dimethyl phthalate (DMP), a persistent and ubiquitous pollutant of the aquatic environment. The process kinetics and energy efficiency, as well as the main plasma generated reactive species were determined under various operating conditions concerning the plasma feed gas and flowrate, the voltage polarity, the input power, the DMP initial concentration, the liquid conductivity, and the aqueous matrix used to prepare DMP solutions for these experiments. The MCD reactor, operated with air as plasma feed gas and negative voltage polarity, gave the best results in terms of rate and energy efficiency. Moreover, variations in plasma input power and in the liquid conductivity have limited effect on DMP degradation rate, making this reactor suitable for treating liquids with a range of initial conductivities The effects of DMP initial concentration on its rate of degradation and on the process energy efficiency were also investigated. Differences in the efficiency of production and distribution of plasma generated reactive species, notably •OH and H2O2, observed for the two tested reactors are discussed in terms of different extension of the plasma/liquid interface and diffusion into the bulk solution. It is proposed that among the reactive species, •OH foremost, and O3 to a lesser extent, play a pivotal role in DMP degradation, while the contribution of H2O2 appears to be limited. The rate of DMP degradation was not drastically different in Milli-Q water and in tap water, a positive outcome in view of practical applications of the technology. The lower rate observed in tap than in Milli-Q water is attributed to the presence of bicarbonate and carbonate, which are known scavengers of hydroxyl radicals.
Collapse
Affiliation(s)
- Kubra Ulucan-Altuntas
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy; Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey
| | - Mubbshir Saleem
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy.
| | - Giulia Tomei
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Ester Marotta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy.
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|