1
|
Cavadini GB, Rodriguez M, Cook LM. Connecting blue-green infrastructure elements to reduce combined sewer overflows. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121465. [PMID: 38901320 DOI: 10.1016/j.jenvman.2024.121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
By infiltrating and retaining stormwater, Blue-Green Infrastructure (BGI) can help to reduce Combined Sewer Overflows (CSOs), one of the main causes of urban water pollution. Several studies have evaluated the ability of individual BGI types to reduce CSOs; however, the effect of combining these elements, likely to occur in reality, has not yet been thoroughly evaluated. Moreover, the CSO volume reduction potential of relevant components of the urban drainage system, such as detention ponds, has not been quantified using hydrological models. This study presents a systematic way to assess the potential of BGI combinations to mitigate CSO discharge in a catchment near Zurich (Switzerland). Sixty BGI combinations, including four BGI elements (bioretention cells, permeable pavement, green roofs, and detention ponds) and four different implementation rates (25%, 50%, 75%, and 100% of the available sewer catchment area) are evaluated for four runoff routing schemes. Results reveal that BGI combinations can provide substantial CSO volume reductions; however, combinations including detention ponds can potentially increase CSO frequency, due to runoff prolongation. When runoff from upstream areas is routed to the BGI, the CSO discharge reductions from combinations of BGI elements differ from the cumulative CSO discharge reductions achieved by individual BGI types, indicating that the sum of effects from individual BGI types cannot accurately predict CSO discharge in combined BGI scenarios. Moreover, larger BGI implementation areas are not consistently more cost-effective than small implementation areas, since the additional CSO volume reduction does not outweigh the additional costs. The best-performing BGI combination depends on the desired objective, being CSO volume reduction, CSO frequency reduction or cost-effectiveness. This study emphasizes the importance of BGI combinations and detention ponds in CSO mitigation plans, highlighting their critical factors-BGI types, implementation area, and runoff routing- and offering a novel and systematic approach to develop tailored BGI strategies for urban catchments facing CSO challenges.
Collapse
Affiliation(s)
- Giovan Battista Cavadini
- Department of Urban Water Management, Swiss Federal Institute for Aquatic Research (Eawag), Überlandstrasse 133, 8600, Dübendorf, Switzerland; Institute of Environmental Engineering, ETH Zürich, John-von-Neumann-Weg 9, 8049, Zürich, Switzerland
| | - Mayra Rodriguez
- Department of Urban Water Management, Swiss Federal Institute for Aquatic Research (Eawag), Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Lauren M Cook
- Department of Urban Water Management, Swiss Federal Institute for Aquatic Research (Eawag), Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
2
|
Perry WB, Ahmadian R, Munday M, Jones O, Ormerod SJ, Durance I. Addressing the challenges of combined sewer overflows. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123225. [PMID: 38151091 DOI: 10.1016/j.envpol.2023.123225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Europe's ageing wastewater system often combines domestic sewage with surface runoff and industrial wastewaters. To reduce the associated risk of overloading wastewater treatment works during storms, and to prevent wastewater backing-up into properties, Combined Sewer Overflows (CSOs) are designed into wastewater networks to release excess discharge into rivers or coastal waters without treatment. In view of growing regulatory scrutiny and increasing public concern about their excessive discharge frequencies and potential impacts on environments and people, there is a need to better understand these impacts to allow prioritisation of cost-effective solutions.We review: i) the chemical, physical and biological composition of CSOs discharges; ii) spatio-temporal variations in the quantity, quality and load of overflows spilling into receiving waters; iii) the potential impacts on people, ecosystems and economies. Despite investigations illustrating the discharge frequency of CSOs, data on spill composition and loading of pollutants are too few to reach representative conclusions, particularly for emerging contaminants. Studies appraising impacts are also scarce, especially in contexts where there are multiple stressors affecting receiving waters. Given the costs of addressing CSOs problems, but also the likely long-term gains (e.g. economic stimulation as well as improvements to biodiversity, ecosystem services, public health and wellbeing), we highlight here the need to bolster these evidence gaps. We also advocate no-regrets options to alleviate CSO problems taking into consideration economic costs, carbon neutrality, ecosystem benefit and community well-being. Besides pragmatic, risk-based investment by utilities and local authorities to modernise wastewater systems, these include i) more systemic thinking, linking policy makers, consumers, utilities and regulators, to shift from local CSO issues to integrated catchment solutions with the aim of reducing contributions to wastewater from surface drainage and water consumption; ii) broader societal responsibilities for CSOs, for example through improved regulation, behavioural changes in water consumption and disposal of waste into wastewater networks, and iii) greater cost-sharing of wastewater use.
Collapse
Affiliation(s)
- William Bernard Perry
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Reza Ahmadian
- School of Engineering, Cardiff University, Cardiff, CF10 3AX, UK
| | - Max Munday
- Cardiff Business School, Cardiff University, Cardiff, CF10 3AX, UK
| | - Owen Jones
- School of Mathematics, Cardiff University, Cardiff, CF10 3AX, UK
| | - Steve J Ormerod
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Isabelle Durance
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
3
|
Ding H, Niu X, Zhang D, Lv M, Zhang Y, Lin Z, Fu M. Spatiotemporal analysis and prediction of water quality in Pearl River, China, using multivariate statistical techniques and data-driven model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63036-63051. [PMID: 36952164 DOI: 10.1007/s11356-023-26209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/26/2023] [Indexed: 05/10/2023]
Abstract
Identifying spatiotemporal variation patterns and predicting future water quality are critical for rational and effective surface water management. In this study, an exploratory analysis and forecast workflow for water quality in Pearl River, Guangzhou, China, was established based on the 4-h interval dataset selected from 10 stations for water quality monitoring from 2019 to 2021. The multiple statistical techniques, such as cluster analysis (CA), principal component analysis (PCA), correlation analysis (CoA), and redundancy analysis (RDA), as well as data-driven model (i.e., gated recurrent unit (GRU)), were applied for assessing and predicting the water quality in the basin. The investigated sampling stations were classified into 3 categories based on differences in water quality, i.e., low, moderate, and high pollution regions. The average water quality indexes (WQI) values ranged from 38.43 to 92.63. Nitrogen was the most dominant pollutant, with high TN concentrations of 0.81-7.67 mg/L. Surface runoff, atmospheric deposition, and anthropogenic activities were the major contributors affecting the spatiotemporal variations in water quality. The decline in river water quality during the wet season was mainly attributed to increased surface runoff and extensive human activities. Furthermore, the short-term prediction of river water quality was achieved using the GRU model. The result indicated that for both DLCK and DTJ stations, the WQI for the 5-day lead time were predicted with accuracies of 0.82; for the LXH station, the WQI for the 3-day lead time was forecasted with an accuracy of 0.83. The finding of this study will shed a light on an effective reference and systematic support for spatio-seasonal variation and prediction patterns of water quality.
Collapse
Affiliation(s)
- HaoNan Ding
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, 382 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Xiaojun Niu
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, 382 Waihuan East Road, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China.
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou HigherEducation Mega Centre, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, People's Republic of China
| | - Mengyu Lv
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, 382 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Yang Zhang
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, 382 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Zhang Lin
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, 382 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| | - Mingli Fu
- School of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, 382 Waihuan East Road, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
4
|
Liu L, Dobson B, Mijic A. Optimisation of urban-rural nature-based solutions for integrated catchment water management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117045. [PMID: 36549055 DOI: 10.1016/j.jenvman.2022.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Nature-based solutions (NBS) have co-benefits for water availability, water quality, and flood management. However, searching for optimal integrated urban-rural NBS planning to maximise co-benefits at a catchment scale is still limited by fragmented evaluation. This study develops an integrated urban-rural NBS planning optimisation framework based on the CatchWat-SD model, which is developed to simulate a multi-catchment integrated water cycle in the Norfolk region, UK. Three rural (runoff attenuation features, regenerative farming, floodplain) and two urban (urban green space, constructed wastewater wetlands) NBS interventions are integrated into the model at a range of implementation scales. A many-objective optimisation problem with seven water management objectives to account for flow, quality and cost indicators is formulated, and the NSGAII algorithm is adopted to search for optimal NBS portfolios. Results show that rural NBS have more significant impacts across the catchment, which increase with the scale of implementation. Integrated urban-rural NBS planning can improve water availability, water quality, and flood management simultaneously, though trade-offs exist between different objectives. Runoff attenuation features and floodplains provide the greatest benefits for water availability. Regenerative farming is most effective for water quality and flood management, though it decreases water availability by up to 15% because it retains more water in the soil. Phosphorus levels are best reduced by expansion of urban green space to decrease loading on combined sewer systems, though this trades off against water availability, flood, nitrogen and suspended solids. The proposed framework enables spatial prioritisation of NBS, which may ultimately guide multi-stakeholder decision-making, bridging the urban-rural divide in catchment water management.
Collapse
Affiliation(s)
- Leyang Liu
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom.
| | - Barnaby Dobson
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Ana Mijic
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Sponge City Practices in China: From Pilot Exploration to Systemic Demonstration. WATER 2022. [DOI: 10.3390/w14101531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In recent years, China has been committed to strengthening environmental governance and trying to build a sustainable society in which humans and nature develop in harmony. As a new urban construction concept, sponge city uses natural and ecological methods to retain rainwater, alleviate flooding problems, reduce the damage to the water environment, and gradually restore the hydrological balance of the construction area. The paper presents a review of sponge city construction from its inception to systematic demonstration. In this paper, research gaps are discussed and future efforts are proposed. The main contents include: (1) China’s sponge city construction includes but is not limited to source control or a drainage system design. Sponge city embodies foreign experience and the wisdom of ancient Chinese philosophy. The core of sponge city construction is to combine various specific technologies to alleviate urban water problems such as flooding, water environment pollution, shortage of water resources and deterioration of water ecology; (2) this paper also introduces the sponge city pilot projects in China, and summarizes the achievements obtained and lessons learned, which are valuable for future sponge city implementation; (3) the objectives, corresponding indicators, key contents and needs of sponge city construction at various scales are different. The work at the facility level is dedicated to alleviating urban water problems through reasonable facility scale and layout, while the work at the plot level is mainly to improve the living environment through sponge city construction. The construction of urban and watershed scales is more inclined to ecological restoration and blue-green storage spaces construction. Besides, the paper also describes the due obligations in sponge city construction of various stakeholders.
Collapse
|
6
|
Johnson D, Geisendorf S. Valuing ecosystem services of sustainable urban drainage systems: A discrete choice experiment to elicit preferences and willingness to pay. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114508. [PMID: 35066194 DOI: 10.1016/j.jenvman.2022.114508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/14/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Sustainable urban drainage systems (SUDS) address stormwater management issues and provide a variety of benefits to residents in terms of ecosystem services. Economically valuing the non-monetary ecosystem services often proves difficult, as limited markets for SUDS measures exist, rendering revealed preference methods inapplicable. We conducted a discrete choice experiment to elicit the preferences and willingness to pay of the ecosystem services of SUDS in Berlin, Germany. Results from a latent class model indicated how residents weigh the different ecosystem services and that they garner the highest utility in improved water quality from reduced fish die-offs. With these results, practitioners and policy makers can better prioritize measures and make strong economic arguments for SUDS implementation and increasing the provision of ecosystem services.
Collapse
Affiliation(s)
- Daniel Johnson
- ESCP Business School Berlin, Chair of Environment and Economics, Heubnerweg 8-10, 14059, Berlin, Germany.
| | - Sylvie Geisendorf
- ESCP Business School Berlin, Chair of Environment and Economics, Heubnerweg 8-10, 14059, Berlin, Germany
| |
Collapse
|
7
|
Owolabi TA, Mohandes SR, Zayed T. Investigating the impact of sewer overflow on the environment: A comprehensive literature review paper. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113810. [PMID: 34731959 DOI: 10.1016/j.jenvman.2021.113810] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Sewer networks play a pivotal role in our everyday lives by transporting the stormwater and urban sewage away from the urban areas. In this regard, Sewer Overflow (SO) has been considered as a detrimental threat to our environment and health, which results from the wastewater discharge into the environment. In order to grapple with such deleterious phenomenon, numerous studies have been conducted; however, there has not been any review paper that provides the researchers undertaking research in this area with the following inclusive picture: (1) detailed-scientometric analysis of the research undertaken hitherto, (2) the types of methodologies used in the previous studies, (3) the aspects of environment impacted by the SO occurrence, and (4) the gaps existing in the relative literature together with the potential future works to be undertaken. Based on the comprehensive review undertaken, it is observed that simulation and artificial intelligence-based methods have been the most popular approaches. In addition, it has come to the attention that the detrimental impacts associated with the SO are fourfold as follows: air, quality of water, soil, and business and structure. Among these, the majority of the studies' focus have been tilted towards the impact of SO on the quality of ground water. The outcomes of this state-of-the-art review provides the researchers and environmental engineers with inclusive hindsight in dealing with such serious issue, which in turn, this culminates in a significant improvement in our environment as well as humans' well-beings.
Collapse
Affiliation(s)
- Titilayo Abimbola Owolabi
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | - Saeed Reza Mohandes
- Department of Building and Real Estate (BRE), Faculty of Construction and Environment (FCE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Tarek Zayed
- Department of Building and Real Estate (BRE), Faculty of Construction and Environment (FCE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Deng C, Liu L, Li H, Peng D, Wu Y, Xia H, Zhang Z, Zhu Q. A data-driven framework for spatiotemporal characteristics, complexity dynamics, and environmental risk evaluation of river water quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147134. [PMID: 33940408 DOI: 10.1016/j.scitotenv.2021.147134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
To evaluate the evolution of river water quality in a changing environment, measuring the objective water quality is critical for understanding the rules of river water pollution. Based on the sample entropy theory and a nonlinear statistical method, this study aims to identify the spatiotemporal dynamics of water quality and its complexity in the Yangtze River basin using time series data, to separate the contributions of human activity and climate change to water quality, and to establish a data-driven risk assessment framework for the spatial (potential risk) and temporal (direct risk) aspects of water pollution. The results demonstrate that the spatiotemporal dynamics of water quality and sample entropy in each monitoring section are closely related to the characteristics of the corresponding location. The water quality of the main stream is superior, and its complexity is less than that of the tributaries. Cascade reservoir operation and vegetation status, agricultural production, and rainfall patterns exert great influences in the upper, middle, and lower reaches, respectively. Dam construction, urban agglomeration development, and interactions between river and lake are also influencing factors. An attributional analysis found that climate change and human activities negatively contributed to the evolution of NH3-N concentration in most of the monitored sections, and the average relative contribution rates of human activities to changes in water quality in the main and tributary streams were -55.46% and -48.49%, respectively. In addition, the construction of data-driven risk assessment framework can efficiently and accurately assess the potential and direct water pollution risks of rivers.
Collapse
Affiliation(s)
- Chenning Deng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lusan Liu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haisheng Li
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dingzhi Peng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Yifan Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huijuan Xia
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zeqian Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuheng Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
The Potential of Stormwater Management in Addressing the Urban Heat Island Effect: An Economic Valuation. SUSTAINABILITY 2021. [DOI: 10.3390/su13168685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban green infrastructure (UGI) within sustainable stormwater management provides numerous benefits to urban residents, including urban heat island (UHI) mitigation. Cost–benefit analyses (CBA) for UGI have been conducted at neighborhood level with a focus on stormwater management, but valuations of reductions in heat-related hospitalizations and mortality are lacking. These benefits create significant social value; the quantification thereof is essential for urban planning in providing a scientific foundation for the inclusion of UGI in UHI mitigation strategies. This study assesses the potential of three UGI scenarios developed for an urban neighborhood in Berlin, Germany. First, climate data analyses were conducted to determine the cooling effects of tree drains, facade greening, and green roofs. Second, a CBA was performed for each scenario to value UHI mitigation by estimating the damage costs avoided in reduced heat-related hospitalizations and fatalities, using the net present value (NPV) and benefit–cost ratio (BCR) as indicators of economic feasibility. The results indicate heat mitigation capabilities of all three UGI types, with tree drains achieving the strongest cooling effects. Regarding economic feasibility, all scenarios achieve positive NPVs and BCRs above one. The findings confirm the potential of stormwater management in mitigating UHI and generating substantial social value.
Collapse
|
10
|
Oberascher M, Rauch W, Sitzenfrei R. Efficient integration of IoT-based micro storages to improve urban drainage performance through advanced control strategies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2678-2690. [PMID: 34115622 DOI: 10.2166/wst.2021.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The smart rain barrel (SRB) consists of a conventional RB with storage volumes between 200 and 500 L, which is extended by a remotely (and centrally) controllable discharge valve. The SRB is capable of releasing stormwater prior to precipitation events by using high-resolution weather forecasts to increase detention capacity. However, as shown in a previous work, a large-scale implementation combined with a simultaneous opening of discharge valves clearly reduced the effectiveness. The aim of this work was to systematically investigate different control strategies for wet weather by evaluating their impact on sewer performance. For the case study, an alpine municipality was hypothetically retrofitted with SRBs (total additional storage volume of 181 m3). The results showed that combined sewer overflow (CSO) volume and subsequently pollution mass can be reduced by between 7 and 67% depending on rain characteristics (e.g., rain pattern, amount of precipitation) and an applied control strategy. Effectiveness of the SRBs increases with lower CSO volume, whereas more advanced control strategies based on sewer conditions can clearly improve the system's performance compared to simpler control strategies. For higher CSO volume, the SRBs can postpone the start of an CSO event, which is important for a first-flush phenomenon.
Collapse
Affiliation(s)
- Martin Oberascher
- Unit of Environmental Engineering, Department of Infrastructure Engineering, Faculty of Engineering Sciences, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria E-mail:
| | - Wolfgang Rauch
- Unit of Environmental Engineering, Department of Infrastructure Engineering, Faculty of Engineering Sciences, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria E-mail:
| | - Robert Sitzenfrei
- Unit of Environmental Engineering, Department of Infrastructure Engineering, Faculty of Engineering Sciences, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria E-mail:
| |
Collapse
|
11
|
López-Vinent N, Cruz-Alcalde A, Ganiyu SO, Sable S, Messele SA, Lillico D, Stafford J, Sans C, Giménez J, Esplugas S, Gamal El-Din M. Coagulation-flocculation followed by catalytic ozonation processes for enhanced primary treatment during wet weather conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:111975. [PMID: 33508550 DOI: 10.1016/j.jenvman.2021.111975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Combined sewer overflows (CSO), generated during the wet weather flow from the combination of the inflow and stormwater runoff in sewer system, result in an overflow of untreated wastewater from sewer system, which might ultimately contain different micropollutants (MPs). In this study, a coagulation-flocculation-sedimentation (CFS) pretreated CSO spiked with MPs was treated by catalytic ozonation using carbon, iron, and peroxide-based catalysts. The catalysts were characterized and their activity on MPs removal was studied at two different ozone (O3) doses (5 and 10 mg L-1). The effect of the treatment on the spiked CSO effluent was also assessed from the acute toxicity of the effluent using Microtox®, Yeast, and Macrophage cell-line toxicity assay tests. All the carbon-based catalysts showed large surface area, which was strongly influenced by the activation technique in the preparation of the catalysts. The CFS treatment strongly reduced the turbidity (≥60%) but had marginal effect on the UV254, dissolved organic carbon (DOC), and pH. Sludge Based Carbon (SBC) showed strong adsorption capacity (≥60% removal efficiency) for all MPs studied compared to other carbon and iron-based catalysts. Ozonation alone was effective for the degradation of easily oxidizable MPs (sulfamethoxazole, mecoprop, and 2,4-dichlorophenoxyl acetic acid), achieving more than 80% degradation efficiency at 10 mg L-1 of ozone, but not effective for atrazine (≤60% degradation efficiency) at similar O3 dose. Catalytic ozonation (at 10 mg L-1 O3 dose) improved the degradation of the MPs at low catalyst dosage but higher dosage strongly inhibited their degradation. In all cases, the effluents showed negligible acute toxicity, indicating the suitability of the process for the treatment of CSO.
Collapse
Affiliation(s)
- Núria López-Vinent
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Alberto Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, 9211-116, Street NW, T6G 1H9, Edmonton, Canada
| | - Shailesh Sable
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, 9211-116, Street NW, T6G 1H9, Edmonton, Canada
| | - Selamawit Ashagre Messele
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, 9211-116, Street NW, T6G 1H9, Edmonton, Canada
| | - Dustin Lillico
- Department of Biological Sciences, 11355, Saskatchewan Drive, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - James Stafford
- Department of Biological Sciences, 11355, Saskatchewan Drive, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Carme Sans
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Jaime Giménez
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain
| | - Santiago Esplugas
- Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, University of Barcelona, C/Martí i Franqués 1, 08028, Barcelona, Spain.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, 9211-116, Street NW, T6G 1H9, Edmonton, Canada.
| |
Collapse
|