1
|
Ojemaye MO, Okoh OO, Okoh AI. Effectiveness of magnetite nanoparticles for the removal of DNA of multidrug-resistant Escherichia coli from municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35098-5. [PMID: 39343811 DOI: 10.1007/s11356-024-35098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Water is an important component of life and plays a vital role in human and animal lives, and because of these essential roles of water to life, access to quality water and in adequate quantity becomes imperative. Subsequently, water/wastewater systems have become established as reservoirs of antimicrobial resistance determinants in the environment. In this study, we carried out the synthesis and characterization of magnetite nanoparticles for use in the removal of genomic DNA of antibiotic resistant Escherichia coli isolate in aqueous system. The synthesis of this nanoparticle was achieved by using precipitation method and characterization of the material was conducted by using Fourier transform infrared spectroscopy (FTIR), scanning electron spectroscopy (SEM), electron diffraction spectroscopy (EDS), and vibrating sample magnetometry (VSM). The SEM analysis revealed that this material is spherical in shape, while the FTIR spectra revealed Fe-O vibrational band at ~ 450 cm-1 confirming the success of the synthesis of this material. The magnetite nanomaterial showed efficiency for the removal of the bacterial DNA from water with a maximum removal capacity of 45.5 ng g-1. The effect of pH (qe max = 55 ng g-1 @ pH = 10), time (qt max @ 180 min), DNA concentration (DNA concentration of 185 ng/mL, qe max = 45.5 ng g-1), and adsorbent weight (% adsorption max = 61.65% @ 0.025 g) suggest that adsorption conditions influence the removal of DNA by this material. In addition, kinetic study shows that the removal of bacterial DNA obeyed pseudo 2nd order indicating that adsorption process was achieved by bimolecular interaction between magnetite and antibiotics resistant bacterial DNA. We conclude that magnetite nanoparticle appears to be a potential candidate for the removal of nucleic acids and antimicrobial resistance determinants in water/wastewater treatment.
Collapse
Affiliation(s)
- Mike O Ojemaye
- SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Eastern Cape, Alice, 5700, South Africa.
- Applied Environmental and Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Eastern Cape, Alice, 5700, South Africa.
| | - Omobola O Okoh
- SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Eastern Cape, Alice, 5700, South Africa
- Applied Environmental and Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Eastern Cape, Alice, 5700, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Eastern Cape, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Center, University of Fort Hare, Eastern Cape, Alice, 5700, South Africa
- Applied Environmental and Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Eastern Cape, Alice, 5700, South Africa
| |
Collapse
|
2
|
Xu R, Huang C, Yang B, Wang S, Zhong T, Ma L, Shang Q, Zhang M, Chu Z, Liu X. Influence of Two-Dimensional Black Phosphorus on the Horizontal Transfer of Plasmid-Mediated Antibiotic Resistance Genes: Promotion or Inhibition? Curr Microbiol 2024; 81:344. [PMID: 39235595 DOI: 10.1007/s00284-024-03825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The problem of bacterial resistance caused by antibiotic abuse is seriously detrimental to global human health and ecosystem security. The two-dimensional nanomaterial (2D) such as black phosphorus (BP) is recently expected to become a new bacterial inhibitor and has been widely used in the antibacterial field due to its specific physicochemical properties. Nevertheless, the effects of 2D-BP on the propagation of antibiotic resistance genes (ARGs) in environments and the relevant mechanisms are not clear. Herein, we observed that the sub-inhibitory concentrations of 2D-BP dramatically increased the conjugative transfer of ARGs mediated by the RP4 plasmid up to 2.6-fold at the 125 mg/L exposure level compared with the untreated bacterial cells. Nevertheless, 2D-BP with the inhibitory concentration caused a dramatic decrease in the conjugative frequency. The phenotypic changes revealed that the increase of the conjugative transfer caused by 2D-BP exposure were attributed to the excessive reactive oxygen species and oxidative stress, and increased bacterial cell membrane permeability. The genotypic evidence demonstrated that 2D-BP affecting the horizontal gene transfer of ARGs was probably through the upregulation of mating pair formation genes (trbBp and traF) and DNA transfer and replication genes (trfAp and traJ), as well as the downregulation of global regulatory gene expression (korA, korB, and trbA). In summary, the changes in the functional and regulatory genes in the conjugative transfer contributed to the stimulation of conjugative transfer. This research aims to broaden our comprehension of how nanomaterials influence the dissemination of ARGs by elucidating their effects and mechanisms.
Collapse
Affiliation(s)
- Rongrong Xu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Chuang Huang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Bo Yang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Shengli Wang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Tianyang Zhong
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Lulu Ma
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Qiannan Shang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Mengyao Zhang
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Zhuding Chu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University, No. 99 Jinxiu Road, Hefei, 230601, China.
- International (Sino-German) Joint Research Center for Biomass of Anhui Province, Hefei, 230601, China.
| |
Collapse
|
3
|
Adefisoye MA, Olaniran AO. Antimicrobial resistance expansion in pathogens: a review of current mitigation strategies and advances towards innovative therapy. JAC Antimicrob Resist 2023; 5:dlad127. [PMID: 38089461 PMCID: PMC10712721 DOI: 10.1093/jacamr/dlad127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The escalating problem of antimicrobial resistance (AMR) proliferation in clinically important pathogens has become one of the biggest threats to human health and the global economy. Previous studies have estimated AMR-associated deaths and disability-adjusted life-years (DALYs) in many countries with a view to presenting a clearer picture of the global burden of AMR-related diseases. Recently, several novel strategies have been advanced to combat resistance spread. These include efflux activity inhibition, closing of mutant selection window (MSW), biofilm disruption, lytic bacteriophage particles, nanoantibiotics, engineered antimicrobial peptides, and the CRISPR-Cas9 gene-editing technique. The single or integrated deployment of these strategies has shown potentialities towards mitigating resistance and contributing to valuable therapeutic outcomes. Correspondingly, the new paradigm of personalized medicine demands innovative interventions such as improved and accurate point-of-care diagnosis and treatment to curtail AMR. The CRISPR-Cas system is a novel and highly promising nucleic acid detection and manipulating technology with the potential for application in the control of AMR. This review thus considers the specifics of some of the AMR-mitigating strategies, while noting their drawbacks, and discusses the advances in the CRISPR-based technology as an important point-of-care tool for tracking and curbing AMR in our fight against a looming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Martins A Adefisoye
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan-Remo, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
4
|
Arun J, Nachiappan S, Rangarajan G, Alagappan RP, Gopinath KP, Lichtfouse E. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:339-362. [PMID: 36060494 PMCID: PMC9419126 DOI: 10.1007/s10311-022-01503-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/05/2022] [Indexed: 05/04/2023]
Abstract
Global pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis. The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photocatalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanims, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/solvothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Centre for Waste Management-International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Tamil Nadu, Chennai, 6030119 India
| | - S. Nachiappan
- Department of Chemical Engineering, University of Technology and Applied Sciences, Salalah, Sultanate of Oman
| | - Goutham Rangarajan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S3E5 Canada
| | - Ram Prasath Alagappan
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601 DA Delft, The Netherlands
| | - K. P. Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam (OMR), Tamil Nadu, Chennai, 603110 India
| | - Eric Lichtfouse
- European Centre for Research and Education in Geosciences (CEREGE), Aix Marseille University, 13007 Marseille, France
| |
Collapse
|
5
|
Raichur A, Sinha N. Synthesis of multi-layered nanoswabs for simultaneous and expeditious removal of antibiotic-resistant bacteria, dyes, and antibiotics from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Kiremitler NB, Kemerli MZ, Kayaci N, Karagoz S, Pekdemir S, Sarp G, Sanduvac S, Onses MS, Yilmaz E. Nanostructures for the Prevention, Diagnosis, and Treatment of SARS-CoV-2: A Review. ACS APPLIED NANO MATERIALS 2022; 5:6029-6054. [PMID: 37552745 PMCID: PMC8905929 DOI: 10.1021/acsanm.2c00181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 06/17/2023]
Abstract
Scientists, doctors, engineers, and even entire societies have become aware of the seriousness of the COVID-19 infection and are taking action quickly, using all the tools from protection to treatment against coronavirus SARS-CoV-2. Especially in this sense, scientific approaches and materials using nanotechnology are frequently preferred. In this review, we focus on how nanoscience and nanotechnology approaches can be used for protective equipment, diagnostic and treatment methods, medicine, and vaccine applications to stop the coronavirus SARS-CoV-2 and prevent its spread. SARS-CoV-2, which itself can be considered as a core-shell nanoparticle, can interact with various materials around it and remain bound for variable periods of time while maintaining its bioactivity. These applications are especially critical for the controlled use of disinfection systems. One of the most important processes in the fight against coronavirus is the rapid diagnosis of the virus in humans and the initiation of isolation and treatment processes. The development of nanotechnology-based test and diagnostic kits is another important research thrust. Nanotechnological therapeutics based on antiviral drug design and nanoarchitecture vaccines have been vital. Nanotechnology plays critical roles in the production of protective film surfaces for self-cleaning and antiviral masks, gloves, and laboratory clothes. An overview of literature studies highlighting nanotechnology and nanomaterial-based approaches to combat SARS-CoV-2 is presented.
Collapse
Affiliation(s)
- Nuri Burak Kiremitler
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Munteha Zeynep Kemerli
- Drug Application and Research Center,
Erciyes University, 38039 Kayseri,
Turkey
- Department of Health Services, Halil Bayraktar
Vocational College, Erciyes University, 38039 Kayseri,
Turkey
| | - Nilgun Kayaci
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Sultan Karagoz
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Textile Engineering, Faculty of
Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Sami Pekdemir
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Airframes and Powerplants, Erciyes
University, 38039 Kayseri, Turkey
| | - Gokhan Sarp
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Senem Sanduvac
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Bünyan Vocational College, Kayseri
University, 38280 Kayseri, Turkey
| | - Mustafa Serdar Onses
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Department of Materials Science and Engineering,
Faculty of Engineering, Erciyes University, 38039 Kayseri,
Turkey
| | - Erkan Yilmaz
- ERNAM-Erciyes University Nanotechnology
Application and Research Center, 38039 Kayseri,
Turkey
- Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
- Technology Research & Application
Center (TAUM), Erciyes University, 38039 Kayseri,
Turkey
- ChemicaMed Chemical Inc., Erciyes
University Technology Development Zone, 38039 Kayseri,
Turkey
| |
Collapse
|
7
|
Does Chlorination Promote Antimicrobial Resistance in Waterborne Pathogens? Mechanistic Insight into Co-Resistance and Its Implication for Public Health. Antibiotics (Basel) 2022; 11:antibiotics11050564. [PMID: 35625208 PMCID: PMC9137585 DOI: 10.3390/antibiotics11050564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical agents including chlorine and antibiotics are used extensively to control infectious microorganisms. While antibiotics are mainly used to treat bacterial infections, chlorine is widely used for microbial inactivation in the post-secondary disinfection steps of water treatment. The extensive use of these agents has been acknowledged as a driving force for the expansion of antimicrobial resistance (AMR) and has prompted discourse on their roles in the evolution and proliferation of resistant pathogens in the aquatic milieus. We live in a possible “post-antibiotic” era when resistant microbes spread at startling levels with dire predictions relating to a potential lack of effective therapeutic antibacterial drugs. There have been reports of enhancement of resistance among some waterborne pathogens due to chlorination. In this context, it is pertinent to investigate the various factors and mechanisms underlying the emergence and spread of resistance and the possible association between chlorination and AMR. We, therefore, reflect on the specifics of bacterial resistance development, the mechanisms of intrinsic and acquired resistance with emphasis on their environmental and public health implications, the co-selection for antibiotic resistance due to chlorination, biofilm microbiology, and multidrug efflux activity. In-depth knowledge of the molecular basis of resistance development in bacteria will significantly contribute to the more rational utilization of these biocidal agents and aid in filling identified knowledge gap toward curbing resistance expansion.
Collapse
|
8
|
Anele A, Obare S, Wei J. Recent Trends and Advances of Co 3O 4 Nanoparticles in Environmental Remediation of Bacteria in Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1129. [PMID: 35407254 PMCID: PMC9000771 DOI: 10.3390/nano12071129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023]
Abstract
Antibiotic resistance is a formidable global threat. Wastewater is a contributing factor to the prevalence of antibiotic-resistant bacteria and genes in the environment. There is increased interest evident from research trends in exploring nanoparticles for the remediation of antibiotic-resistant bacteria. Cobalt oxide (Co3O4) nanoparticles have various technological, biomedical, and environmental applications. Beyond the environmental remediation applications of degradation or adsorption of dyes and organic pollutants, there is emerging research interest in the environmental remediation potential of Co3O4 nanoparticles and its nanocomposites on antibiotic-resistant and/or pathogenic bacteria. This review focuses on the recent trends and advances in remediation using Co3O4 nanoparticles and its nanocomposites on antibiotic-resistant or pathogenic bacteria from wastewater. Additionally, challenges and future directions that need to be addressed are discussed.
Collapse
Affiliation(s)
- Anuoluwapo Anele
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| | - Sherine Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC 27401, USA
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| |
Collapse
|
9
|
Cui H, Smith AL. Impact of engineered nanoparticles on the fate of antibiotic resistance genes in wastewater and receiving environments: A comprehensive review. ENVIRONMENTAL RESEARCH 2022; 204:112373. [PMID: 34774508 DOI: 10.1016/j.envres.2021.112373] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles (NPs) and antibiotic resistance elements are ubiquitous in wastewater and consequently, in receiving environments. Sub-lethal levels of engineered NPs potentially result in a selective pressure on antibiotic resistance gene (ARG) propagation in wastewater treatment plants. Conversely, emergent NPs are being designed to naturally attenuate ARGs based on special physical and electrochemical properties, which could alleviate dissemination of ARGs to the environment. The complex interactions between NPs and antibiotic resistance elements have heightened interest in elucidating the potential positive and negative implications. This review focuses on the properties of NPs and ARGs and how their interactions could increase or decrease antibiotic resistance at wastewater treatment plants and in receiving environments. Further, the potential for sub-lethal level NPs to facilitate horizontal gene transfer of ARGs and increase mutagenesis rates, which adds a layer of complexity to combatting antibiotic resistance associated with wastewater management, is discussed. Notably, the literature revealed that sub-lethal exposure of engineered NPs may facilitate conjugative transfer of ARGs by increasing cell membrane permeability. The enhanced permeability is a result of direct damage via NP attachment and indirect damage by generating reactive oxygen species (ROS) and causing genetic changes relevant to conjugation. Finally, current knowledge gaps and future research directions (e.g., deciphering the fate of NPs in the environment and examining the long-term cytotoxicity of NPs) are identified for this emerging field.
Collapse
Affiliation(s)
- Hanlin Cui
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA, 90089, United States
| | - Adam L Smith
- Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA, 90089, United States.
| |
Collapse
|
10
|
Antibiotic resistance and phylogenetic profiling of Escherichia coli from dairy farm soils; organic versus conventional systems. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100088. [PMID: 34977826 PMCID: PMC8688864 DOI: 10.1016/j.crmicr.2021.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
First known comparison of antimicrobial resistance traits in E. coli strains from new zealand farms practicing organic and conventional husbandry. Potential extended spectrum β-lactamase producing strains isolated from dairy farm environments. Organic dairy farms tended to harbour fewer resistant isolates than those recovered from conventionally farmed counterparts. Evidence for anthroponotic transmission of resistant strains of human origin to farm environments. Implications for the spread of antimicrobial resistance traits from farm environments discussed.
The prevalence and spread of antimicrobial resistance (AMR) as a result of the persistent use and/or abuse of antimicrobials is a key health problem for health authorities and governments worldwide. A study of contrasting farming systems such as organic versus conventional dairy farming may help to authenticate some factors that may contribute to the prevalence and spread of AMR in their soils. A case study was conducted in organic and conventional dairy farms in the South Canterbury region of New Zealand. A total of 814 dairy farm soil E. coli (DfSEC) isolates recovered over two years were studied. Isolates were recovered from each of two farms practicing organic, and another two practicing conventional husbandries. The E. coli isolates were examined for their antimicrobial resistance (AMR) against cefoxitin, cefpodoxime, chloramphenicol, ciprofloxacin, gentamicin, meropenem, nalidixic acid, and tetracycline. Phylogenetic relationships were assessed using an established multiplex PCR method. The AMR results indicated 3.7% of the DfSEC isolates were resistant to at least one of the eight selected antimicrobials. Of the resistant isolates, DfSEC from the organic dairy farms showed a lower prevalence of resistance to the antimicrobials tested, compared to their counterparts from the conventional farms. Phylogenetic analysis placed the majority (73.7%) of isolates recovered in group B1, itself dominated by isolates of bovine origin. The tendency for higher rates of resistance among strains from conventional farming may be important for future decision-making around farming practices Current husbandry practices may contribute to the prevalence and spread of AMR in the industry.
Collapse
|
11
|
Maghrabia A, Boughdady M, Meshali M. Design and Optimization of New Enteric Nanoparticles of Ceftriaxone for Oral Delivery: In vitro and in vivo Assessments. Int J Nanomedicine 2021; 16:5937-5953. [PMID: 34511899 PMCID: PMC8414076 DOI: 10.2147/ijn.s319176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Development of new strategies for oral delivery of existing antibiotics administered exclusively through intravenous route is one of the global priorities of pharmaceutical research. The encapsulation of these active pharmaceutical agents within nanosized natural products offers several traits due to their tunable surface properties. Ceftriaxone (CTX) is an injectable, third-generation cephalosporin that suffers poor oral bioavailability. METHODS In the present study, ionic gelation of two biopolymers, namely chitosan (CH) and shellac (SH), was implemented to consolidate CTX, within elegant nanoparticles (NPs) for oral administration that would increase its bioavailability and sustainability. Quality by design approach (23 full factorial design) was adopted to optimize CTX-loaded nanoparticles. The optimized formula (F2) was characterized through transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). In vitro release behavior and stability study were also evaluated. Pharmacokinetic studies of enteric-coated hard gelatin capsules (HGCs) loaded with F2-NPs were finally assessed. RESULTS The optimized spherical F2-NPs had a mean particle size of 258 nm, zeta potential of about +30.1 and appreciable drug entrapment efficiency of 83%. The in vitro drug release profile of F2-NPs in pH 7.4 experienced biphasic configuration with an initial burst release for an hour, followed by a sustained release over 15 h with Higuchi model and non-Fickian diffusion mechanism (R2=0.9852). High stability upon storage at refrigerated and room temperature for 3 months and good flow properties (θ= 32.2 and HR= 1.13) of the optimized formula were also conferred. In vivo pharmacokinetic assessment in rabbits fruitfully displayed 92% absolute bioavailability of CTX. CONCLUSION The obtained results provide evidence for the potential combination of CH and SH in NPs preparation to enhance the oral bioavailability of CTX.
Collapse
Affiliation(s)
- Amir Maghrabia
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Mariza Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mahasen Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
12
|
Paruch L, Paruch AM, Iordache TV, Olaru AG, Sarbu A. Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials. Polymers (Basel) 2021; 13:polym13101593. [PMID: 34063382 PMCID: PMC8157218 DOI: 10.3390/polym13101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Wastewater (WW) has been widely recognized as the major sink of a variety of emerging pathogens (EPs), antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which may disseminate and impact wider environments. Improving and maximizing WW treatment efficiency to remove these microbial hazards is fundamentally imperative. Despite a variety of physical, biological and chemical treatment technologies, the efficiency of ARG removal is still far from satisfactory. Within our recently accomplished M-ERA.NET project, novel functionalized nanomaterials, i.e., molecularly imprinted polymer (MIP) films and quaternary ammonium salt (QAS) modified kaolin microparticles, were developed and demonstrated to have significant EP removal effectiveness on both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB) from WW. As a continuation of this project, we took the further step of exploring their ARG mitigation potential. Strikingly, by applying MIP and QAS functionalized kaolin microparticles in tandem, the ARGs prevalent in wastewater treatment plants (WWTPs), e.g., blaCTXM, ermB and qnrS, can be drastically reduced by 2.7, 3.9 and 4.9 log (copies/100 mL), respectively, whereas sul1, tetO and mecA can be eliminated below their detection limits. In terms of class I integron-integrase I (intI1), a mobile genetic element (MGE) for horizontal gene transfer (HGT), 4.3 log (copies/100 mL) reduction was achieved. Overall, the novel nanomaterials exhibit outstanding performance on attenuating ARGs in WW, being superior to their control references. This finding provides additional merit to the application of developed nanomaterials for WW purification towards ARG elimination, in addition to the proven bactericidal effect.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Oluf Thesens 43, 1433 Aas, Norway;
- Correspondence:
| | - Adam M. Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Oluf Thesens 43, 1433 Aas, Norway;
| | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; (T.-V.I.); (A.S.)
| | | | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; (T.-V.I.); (A.S.)
| |
Collapse
|
13
|
Sabo-Attwood T, Apul OG, Bisesi JH, Kane AS, Saleh NB. Nano-scale applications in aquaculture: Opportunities for improved production and disease control. JOURNAL OF FISH DISEASES 2021; 44:359-370. [PMID: 33559228 DOI: 10.1111/jfd.13332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Aquaculture is the fastest growing food-production sector and is vital to food security, habitat restoration and endangered species conservation. One of the continued challenges to the industry is our ability to manage aquatic disease agents that can rapidly decimate operations and are a constant threat to sustainability. Such threats also evolve as microbes acquire resistance and/or new pathogens emerge. The advent of nanotechnology has transformed our approach to fisheries disease management with advances in water disinfection, food conversion, fish health and management systems. In this review, several nano-enabled technology successes will be discussed as they relate to the challenges associated with disease management in the aquaculture sector, with a particular focus on fishes. Future perspectives on how nanotechnology can offer functional approaches for improving disinfection and innovating at the practical space of early warning systems will be discussed. Finally, the importance of "safety by design" approaches to the development of novel commercial nano-enabled products will be emphasized.
Collapse
Affiliation(s)
- Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Andrew S Kane
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|