1
|
Wu P, Chen B, Li R, Li R. Prediction of heavy metal ion distribution and Pb and Zn ion concentrations in the tailing pond area. PLoS One 2024; 19:e0308916. [PMID: 39325765 PMCID: PMC11426534 DOI: 10.1371/journal.pone.0308916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/01/2024] [Indexed: 09/28/2024] Open
Abstract
The pollution caused by tailings ponds has resulted in ecological damage, with soil contamination significantly impacting the daily lives of residents in the vicinity of mining areas and the future development of mining areas. This study assesses the transport status of heavy metal pollution in tailings areas and predicts its impact on future pollution levels. This study focused on lead-zinc tailing ponds, exploring the spatial and chemical distribution characteristics of heavy metals based on the distributions of Pb, Zn, As, Cu, Cr, Cd, Hg, and Ge ions. The concentrations of the major heavy metal ions Pb and Zn in tailings ponds were predicted via the exponential smoothing method. ① The total accumulation of Pb and Zn in the mine tailings ranges from 936.74~1212.61 mg/kg and 1611.85~2191.47 mg/kg, much greater than the total accumulation of the remaining six heavy metals. The total accumulation of associated heavy metal Cu was high, and the lowest total heavy metals were Hg and Ge at only 0.19 mg/kg and 1.05 mg/kg. ② The analyses of soil heavy metal chemical forms reveal that the heavy metals Pb and Zn had the highest exchangeable state content and state ratio and the strongest transport activity in the industrial plaza and village soils. Pb and Zn are the heavy metals with the greatest eco-environmental impacts in the mining area. ③ The predicted results show that the soil concentrations of the heavy metals Pb and Zn around the tailings area in 2026 are 1.335 and 1.191 times the predicted time starting values. The concentrations of the heavy metals Pb and Zn at the starting point of the forecast are already 3.34 and 3.02 times the upper limits of the environmental standard (according to environmental standards for gravelly grey calcium soils). These results have significant implications for heavy metal pollution risk management.
Collapse
Affiliation(s)
- Pengfei Wu
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning, China
- School of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| | - Bowen Chen
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning, China
| | - Runzhi Li
- China Coal Technology and Engineering Group Shenyang Research Institute, Shenyang, Liaoning, China
| | - Ruochen Li
- Triumph Science & Technology Co., Ltd, Bengbu, Anhui, China
| |
Collapse
|
2
|
Jia Y, Yang X, Yan X, Duguer W, Hu H, Chen J. Accumulation, potential risk and source identification of toxic metal elements in soil: a case study of a coal-fired power plant in Western China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7389-7404. [PMID: 37421581 DOI: 10.1007/s10653-023-01661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
Coal-fired power plants (CPP) usually release massive numerous amounts of potentially toxic metal(loid)s (PTMs) into nearby ecosystems. There have been relatively few studies targeted on the ecological influences of PTMs related to the CPP in arid area. In this work, the distribution pattern, source apportionment and environmental risks of As, Cd, Cr, Hg, Pb and a couple of seldom monitored PTMs (Se, Zn, Co, Cu, Fe, Mn and Ni) in the soils near a coal electricity integration base were investigated in Hami, a city in northwestern China. Nemerow synthesis pollution index, geo-accumulation index and ecological risk index were used to assess pollution state of these PTMs in soils, and ordinary Kriging interpolation was used to analyze the spatial distribution for these elements. Methods of CA, PCA, CA and PAM were carried out for quantitative source analysis. The research outcome includes: (1) the contents of individual PTMs in most samples were greater than the background values, the pollution degrees of Se, Pb, Hg, Cd and As were significant, and some areas exceeded the warning threshold value; (2) the main sources of these PTMs were natural sources (35%), coal mine sewage (11%), atmospheric release during coal combustion (21%), dust generated from coal and combustion products (33%); (3) attention should be paid to the open-pit coal mines, shaft coal mines and ash dumps where the contents of metal elements were significantly polluted; and (4) wind is the main driving forces of PTMs migration in arid areas.
Collapse
Affiliation(s)
- Yinggang Jia
- China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiwei Duguer
- Center of Urumqi Natural Resources Comprehensive Survey, CGS, Urumqi, 830057, China
| | - Hongli Hu
- Center of Urumqi Natural Resources Comprehensive Survey, CGS, Urumqi, 830057, China
| | - Jian Chen
- China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
3
|
Mu Y, Cui J, Liu A, Wang S, Shi Q, Wang J, Wei S, Zhang J. Interactions and quantification of multiple influencing factors on cadmium accumulation in soil-rice systems at a large region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163392. [PMID: 37044334 DOI: 10.1016/j.scitotenv.2023.163392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
The accumulation of Cd in soil-rice systems at a large region is often extremely complicated due to environmental heterogeneity and the interactions of multiple influencing factors. However, the interactive effects and quantification of the contributions of influencing factors on Cd accumulation in large regions remain unclear. In this study, conditional inference trees and random forest analysis were used to identify the interactions of various factors (soil properties, topography and demographic-economic), and quantify their contributions to Cd accumulation in soil-rice systems of Sichuan-Chongqing region, China. The results showed that Cd content in the soil was the most significant influencing factor on Cd accumulation in soil-rice systems, especially bioavailable Cd in soil contributed to 35.73 % and 54.78 % for soil total Cd (Cdsoil) and brown rice Cd (Cdrice), respectively. Population density (PD) and elevation contributed 31.16 % and 27.40 % to Cdsoil content, respectively, and their interaction promoted the increase in Cdsoil content. Moreover, PD played a leading role in Cdsoil content when the elevation exceeded 324 m. The relative importances of slope and elevation for Cdrice content were 16.81 % and 8.49 %, respectively, and their interaction facilitated the increment of Cdrice content. As soil pH, gross domestic product (GDP) and slope decreased, the interaction of soil pH with GDP led to the increase of bioavailability factor (BAF), and that with slope enhanced the bioaccumulation factor (BCF). In addition, soil pH, PD and elevation were of considerable importance for the migration and transformation of Cd, with contributions of 22.11 %, 12.90 % and 12.52 % to BAF, and 5.05 %, 5.62 % and 5.50 % to BCF, respectively. This study is hopeful to provide a scientific insight into the prevention and control of Cd contamination in soil-rice systems at a large region.
Collapse
Affiliation(s)
- Yue Mu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jingxin Cui
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Andi Liu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Shuai Wang
- Chongqing Agriculture Technical Extension Station, Chongqing 400121, PR China
| | - Qiujun Shi
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Wang
- Technical Centre, Chongqing Customs, Chongqing 400020, PR China
| | - Shiqiang Wei
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Chen L, Wang J, Guo X, Wu H, He H, Fang L. Pollution characteristics and health risk assessment of potentially toxic elements in soils around China's gold mines: a meta-analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3765-3777. [PMID: 35037140 DOI: 10.1007/s10653-021-01175-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Since toxic element pollution is widespread in soils near gold mines due to increasing mining activities, the adverse effects of potentially toxic elements (PTEs) in the soils on ecological systems and human health cannot be ignored. However, assessments of PTE pollution in soils and their ecological-health risks on a national scale are still limited. Here, the concentrations of eight PTEs in soils near gold mines throughout China were obtained from published articles. Based on these data, the pollution levels and ecological-health risks of the eight PTEs in soils were comprehensively estimated. The results showed that the average contents of As, Cr, Cd, Pb, Hg, Cu, Ni, and Zn were 81.62, 79.82, 1.04, 206.03, 2.05, 40.82, 71.82, and 130.42 mg kg-1, respectively, which exceeded the corresponding background values for soils. Most of the examined soils were heavily polluted by Hg and Cd, and higher pollution levels were found in the Henan and Shaanxi Provinces than in other regions. The average potential ecological risk value of all PTEs was 2534.71, indicating the presence of very high risks. Contribution of Hg to the potential ecological risk was more than 80%. For adults, all hazard index (HI) values of noncarcinogenic risks were below the safe level of 1.00. For children, none of the HI values exceeded the safe level, with the exception of As (HI = 1.81); nevertheless, four PTEs (As, Cr, Cu, and Ni) presented unacceptable carcinogenic risks. This study provides scientific basis for controlling PTE contamination and reducing the health risks in soils near gold mines worldwide.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| | - Jingzhe Wang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area and Guangdong Key Laboratory of Urban Informatics and Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen, 518060, China
| | - Xuetao Guo
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Hao Wu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, 420100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
5
|
Shi T, Zhang J, Shen W, Wang J, Li X. Machine learning can identify the sources of heavy metals in agricultural soil: A case study in northern Guangdong Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114107. [PMID: 36152430 DOI: 10.1016/j.ecoenv.2022.114107] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Source tracing of heavy metals in agricultural soils is of critical importance for effective pollution control and targeting policies. It is a great challenge to identify and apportion the complex sources of soil heavy metal pollution. In this study, a traditional analysis method, positive matrix fraction (PMF), and three machine learning methodologies, including self-organizing map (SOM), conditional inference tree (CIT) and random forest (RF), were used to identify and apportion the sources of heavy metals in agricultural soils from Lianzhou, Guangdong Province, China. Based on PMF, the contribution of the total loadings of heavy metals in soil were 19.3% for atmospheric deposition, 65.5% for anthropogenic and geogenic sources, and 15.2% for soil parent materials. Based on SOM model, As, Cd, Hg, Pb and Zn were attributed to mining and geogenic sources; Cr, Cu and Ni were derived from geogenic sources. Based on CIT results, the influence of altitude on soil Cr, Cu, Hg, Ni and Zn, as well as soil pH on Cd indicated their primary origin from natural processes. Whereas As and Pb were related to agricultural practices and traffic emissions, respectively. RF model further quantified the importance of variables and identified potential control factors (altitude, soil pH, soil organic carbon) in heavy metal accumulation in soil. This study provides an integrated approach for heavy metals source apportionment with a clear potential for future application in other similar regions, as well as to provide the theoretical basis for undertaking management and assessment of soil heavy metal pollution.
Collapse
Affiliation(s)
- Taoran Shi
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jingru Zhang
- Guangdong Province Academic of Environmental Science, Guangzhou 510045, China
| | - Wenjie Shen
- School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai 519000, China; Guangdong Key Laboratory of Geological Process and Mineral Resources Exploration, Zhuhai 519000, China.
| | - Jun Wang
- Guangdong Province Academic of Environmental Science, Guangzhou 510045, China
| | - Xingyuan Li
- College of Earth and Environmental Sciences, Lanzhou University, 730000, China.
| |
Collapse
|
6
|
Aendo P, De Garine-Wichatitsky M, Mingkhwan R, Senachai K, Santativongchai P, Krajanglikit P, Tulayakul P. Potential Health Effects of Heavy Metals and Carcinogenic Health Risk Estimation of Pb and Cd Contaminated Eggs from a Closed Gold Mine Area in Northern Thailand. Foods 2022; 11:foods11182791. [PMID: 36140919 PMCID: PMC9498197 DOI: 10.3390/foods11182791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Gold-mining activities have been demonstrated to result in significant environmental pollution by Hg, Pb, and Mn, causing serious concerns regarding the potential threat to the public health of neighboring populations around the world. The present study focused on heavy-metal contamination in the eggs, blood, feed, soil, and drinking water on chicken farms, duck farms, and free-grazing duck farms located in areas < 25 km and > 25 km away from a gold mine in northern Thailand. In an area < 25 km away, Hg, Pb, and Mn concentrations in the eggs of free-grazing ducks were significantly higher than > 25 km away (p < 0.05). In blood, Hg concentration in free-grazing ducks was also significantly higher than those in an area > 25 km away (p < 0.05). Furthermore, the Pb concentration in the blood of farm ducks was significantly higher than in an area > 25 km away (p < 0.05). The concentration of Cd in drinking water on chicken farms was significantly higher for farms located within 25 km of the gold mine (p < 0.05). Furthermore, a high correlation was shown between the Pb (r2 = 0.84) and Cd (r2 = 0.42) found between drinking water and blood in free-grazing ducks in the area < 25 km away. Therefore, health risk from heavy-metal contamination was inevitably avoided in free-grazing activity near the gold mine. The incremental lifetime cancer risk (ILCR) in the population of both Pb and Cd exceeded the cancer limit (10−4) for all age groups in both areas, which was particularly high in the area < 25 km for chicken-egg consumption, especially among people aged 13−18 and 18−35 years old. Based on these findings, long-term surveillance regarding human and animal health risk must be strictly operated through food chains and an appropriate control plan for poultry businesses roaming around the gold mine.
Collapse
Affiliation(s)
- Paweena Aendo
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Michel De Garine-Wichatitsky
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- CIRAD, UMR ASTRE, Kasetsart University, Bangkok 10900, Thailand
- ASTRE, University Montpellier, CIRAD (French Agricultural Research Centre for International Development), INRAE (French National Research Institute for Agriculture, Food and Environment), 34000 Montpellier, France
| | - Rachaneekorn Mingkhwan
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Pitchaya Santativongchai
- Bio-Veterinary Science (International Program), Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Praphaphan Krajanglikit
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Kasetsart University Research and Development Institute, 50 Ngam Wong Wan Rd., Lat Yao, Chatuchak, Bangkok 10900, Thailand
- Correspondence:
| |
Collapse
|
7
|
Li J, Xia C, Cheng R, Lan J, Chen F, Li X, Li S, Chen J, Zeng T, Hou H. Passivation of multiple heavy metals in lead-zinc tailings facilitated by straw biochar-loaded N-doped carbon aerogel nanoparticles: Mechanisms and microbial community evolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149866. [PMID: 34525768 DOI: 10.1016/j.scitotenv.2021.149866] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal (HM) soil pollution has become an increasingly serious problem with the development of industries. Application of biochar in HMs remediation from contaminated environment has attracted considerable research attention during the past decade. Although the mechanism of HMs passivation with biochar has been investigated, effects and mechanisms of interaction among soil-indigenous microbes and novel carbon matrix composites for HMs adsorption and passivation are still unclear. Four different biochar-loaded aerogels, namely, BNCA-1-600, BNCA-1-900, BNCA-2-600, and BNCA-2-900, were synthesized in this study. Adsorption capacity of four kinds of synthetic materials and two types of contrast biochars (BC600 and BC900) to HMs in aqueous solution, passivation capacity of HMs in soil, and effects on soil organic matter and microbial community were explored. Results showed that BNCA-2-900 exhibits excellent adsorption property and a maximum removal capacity of 205.07 mg·g-1 at 25 °C for Pb(II), 105.56 mg·g-1 for Cd(II), and 137.89 mg·g-1 for Zn(II). Leaching concentration of HMs in contaminated soil can meet the national standard of China (GB/T 5085.3-2007) within 120 days. Results of this study confirmed that the additive BNCA-2-900 and coexistence of indigenous microorganisms can effectively reduce bioavailability of HMs. Another potential mechanism may be to remove the passivation of HMs by porous structure and surface functional groups as well as improve the content of organic matter and microbial abundance. The research results may provide a novel perceptive for the development of functional materials and strategies for eco-friendly and sustainable multiple HMs remediation in contaminated soil and water by using a combination of carbon matrix composites and soil-indigenous microorganisms.
Collapse
Affiliation(s)
- Jiahao Li
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing 526200, Guangdong, China
| | - Chenggong Xia
- Central-southern Safety & Environmental Technology Institute Co., Ltd, Wuhan 430071, Hubei, China
| | - Rong Cheng
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Jirong Lan
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Fangyuan Chen
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Xuli Li
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Shiyao Li
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Jiaao Chen
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Tianyu Zeng
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing 526200, Guangdong, China.
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, Hubei, China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing 526200, Guangdong, China.
| |
Collapse
|