1
|
Zhao ZJ, Liu XL, Wang YX, Wang YS, Shen JY, Pan ZC, Mu Y. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. WATER RESEARCH 2024; 255:121503. [PMID: 38537488 DOI: 10.1016/j.watres.2024.121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan-Shan Wang
- School of Geographic Sciences, Nantong University, Nantong 226007, China
| | - Jin-You Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhi-Cheng Pan
- Laboratory of Urban Wastewater Treatment Technology in Sichuan Province of Haitian Water Group Co., Ltd, Chengdu 610041, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Choudhury AR, Singh N, Lalwani J, Srinivasan H, Palani SG. Enhancing biomethanation performance through co-digestion of diverse organic wastes: a comprehensive study on substrate optimization, inoculum selection, and microbial community analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34622-34646. [PMID: 38709410 DOI: 10.1007/s11356-024-33557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
A blend of organic municipal solid waste, slaughterhouse waste, fecal sludge, and landfill leachate was selected in different mixing ratios to formulate the best substrate mixture for biomethanation. Individual substrates were characterized, and the mixing ratio was optimized with the help of a response surface methodology tool to a value of 1:1:1:1 (with a C/N ratio of 28±0.769 and total volatile fatty acid (VFA) concentration of 2500±10.53 mg/L) to improve the overall biomethanation. The optimized blend (C/N ratio: 28.6, VFA: 2538 mg/L) was characterized for physicochemical, biological, and microbial properties and subjected to anaerobic digestion in lab-scale reactors of 1000 mL capacity with and without the addition of inoculum. The biogas yield of individual substrates and blends was ascertained separately. The observed cumulative biogas yield over 21 days from the non-inoculated substrates varied between 142±1.95 mL (24.6±0.3 ml/gVS) and 1974.5±21.72 mL (270.4±3.1 ml/gVS). In comparison, the addition of external inoculation at a 5% rate (w/w) of the substrate uplifted the minimum and maximum cumulative gas yield values to 203±9.9 mL (35.0±1.6 mL/gVS) and 3394±13.4 mL (315.3±1.2 mL/gVS), respectively. The inoculum procured from the Defence Research and Development Organisation (DRDO) was screened in advance, considering factors such as maximizing VFA production and consumption rate, biogas yield, and digestate quality. A similar outcome regarding biogas yield and digestate quality was observed for the equivalent blend. The cumulative gas yield increased from 2673±14.5 mL (373.7±2.2 mL/gVS) to 4284±111.02 mL (391.47±20.02 mL/gVS) over 21 days post-application of a similar dosage of DRDO inoculum. The 16S rRNA genomic analysis revealed that the predominant bacterial population belonged to the phylum Firmicutes, with the majority falling within the orders Clostridiales and Lactobacillales. Ultimately, the study advocates the potential of the blend mentioned above for biomethanation and concomitant enrichment of both biogas yield and digestate quality.
Collapse
Affiliation(s)
- Atun Roy Choudhury
- Cube Bio Energy Pvt. Ltd., Madhapur, Hyderabad, Telangana, 500081, India
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India
| | - Neha Singh
- Unison I3X Private Limited, Plot No. 23, Maruti Industrial Area, Sector-18, Gurgaon, Haryana, 122015, India
- The K.R.T. Arts, B.H. Commerce & A.M. Science College, Savitribai Phule Pune University, Gangapur Rd, Shivaji Nagar, Nashik, Maharashtra, 422002, India
| | - Jitesh Lalwani
- School of Business, Woxsen University, Hyderabad, Telangana, 502345, India
| | - Hemapriya Srinivasan
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India
| | - Sankar Ganesh Palani
- Department of Biological Sciences, Birla Institute of Technology and Science, Hyderabad Campus, Pilani, Telangana, 500078, India.
| |
Collapse
|
3
|
Gu S, Xing H, Zhang L, Wang R, Kuang R, Li Y. Effects of food wastes based on different components on digestibility and energy recovery in hydrogen and methane co-production. Heliyon 2024; 10:e25421. [PMID: 38322844 PMCID: PMC10844570 DOI: 10.1016/j.heliyon.2024.e25421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
This study was conducted for four organic fractions (carbohydrates, proteins, cellulose, lipids) at an inoculum concentration of 30 % and a total solid (TS) of 8 % to investigate the effect of the main components of food waste on the performance of the two-stage anaerobic digestion. The results showed that the gas phase products were closely related to the composition of the substrate, with the carbohydrate and lipid groups showing the best hydrogen (154.91 ± 2.39mL/gVS) and methane (381.83 ± 12.691mL/gVS) production performance, respectively. However, the increased protein content predisposes the system to inhibition of gas production, which is mutually supported by changes in the activity of dehydrogenase and coenzyme F420. Butyric acid (53.19 %) dominated the liquid phase products in both stages, indicating that all four organic fractions were butyric acid-based fermentation and that the final soluble chemical oxygen demand degradation reached 72.97 %-82.86 %. The carbohydrate and cellulose groups achieved the best energy recovery performance, with conversion rates exceeding 65 %. The above results can provide a useful reference for the resource utilization of food waste.
Collapse
Affiliation(s)
- Shiyan Gu
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huige Xing
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lei Zhang
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ruji Wang
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ruoyu Kuang
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Li
- School of Engineering, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
4
|
Zhu H, An Q, Syafika Mohd Nasir A, Babin A, Lucero Saucedo S, Vallenas A, Li L, Baldwin SA, Lau A, Bi X. Emerging applications of biochar: A review on techno-environmental-economic aspects. BIORESOURCE TECHNOLOGY 2023; 388:129745. [PMID: 37690489 DOI: 10.1016/j.biortech.2023.129745] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Biomass fast pyrolysis produces bio-oil and biochar achieving circular economy. This review explored the emerging applications of biochar. Biochar possesses the unique properties for removing emerging contaminants and for mine remediation, owing to its negative charge surface, high specific surface area, large pore size distribution and surface functional groups. Additionally, biochar could adsorb impurities such as CO2, moisture, and H2S to upgrade the biogas. Customizing pyrolysis treatments, optimizing the feedstock and pyrolysis operating conditions enhance biochar production and improve its surface properties for the emerging applications. Life cycle assessment and techno-economic assessment indicated the benefits of replacing conventional activated carbon with biochar.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Qing An
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Thermal and Environmental Engineering Institute, Mechanical Engineering College, Tongji University, Shanghai 201800, China
| | - Amirah Syafika Mohd Nasir
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Alexandre Babin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sofia Lucero Saucedo
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Amzy Vallenas
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Loretta Li
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Susan Anne Baldwin
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anthony Lau
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xiaotao Bi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
5
|
Zhuravleva E, Kovalev A, Kovalev D, Kotova I, Shekhurdina S, Laikova A, Krasnovsky A, Pygamov T, Vivekanand V, Li L, He C, Litti Y. Does carbon cloth really improve thermophilic anaerobic digestion performance on a larger scale? focusing on statistical analysis and microbial community dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118124. [PMID: 37172349 DOI: 10.1016/j.jenvman.2023.118124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023]
Abstract
Currently, the phenomenon of direct interspecies electron transfer (DIET) is of great interest in the technology of anaerobic digestion (AD) due to potential performance benefits. However, the conditions for the occurrence of DIET and its limits on improving AD under conditions close to real have not been studied enough. This research is concentrated on the effect of conductive carbon cloth (R3), in comparison with a dielectric fiberglass cloth (R2) and control (R1), on the AD performance in large (90 L) thermophilic reactors, fed with a mixture of simulated organic fraction of municipal solid waste and sewage sludge. While organic loading rate (OLR) was gradually increased from 2.4 to 8.66 kg VS/(m3 day), a statistically significant (p < 0.05) difference in biogas production was observed between R1 and both R2 and R3. However, at a maximum OLR of 12.12 kg VS/(m3 day) in R3, an increase in biogas production (p < 0.05) was observed both compared to R1 (by 8.97%) and R2 (by 4.24%). The content of volatile fatty acids in R3 as a whole was the lowest, especially at the maximum OLR. Biofilm on carbon cloth was rich in syntrophic microorganisms of the genera Tepidanaerobacter, as well as Defluviitoga, capable of DIET in mixed cultures with Methanothrix, which was the most abundant methanogen in biofilm. Suspended Bifidobacterium, Fervidobacterium and Anaerobaculum were negatively affected, while Defluviitoga, Methanothermobacter and Methanosarcina, on the contrary, were positively affected by the increase in OLR and showed, respectively, a negative and positive correlation (p < 0.05) with the main AD performance parameters.
Collapse
Affiliation(s)
- Elena Zhuravleva
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences; Moscow, Leninsky Prospekt, 33, 2, 119071, Russia; Department of Biology, Lomonosov Moscow State University; Moscow, Leninskie Gory, 1, 12, 119899, Russia.
| | - Andrey Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM"; Moscow, 1st Institutskiy Proezd, 5, 109428, Russia.
| | - Dmitriy Kovalev
- Federal State Budgetary Scientific Institution "Federal Scientific Agroengineering Center VIM"; Moscow, 1st Institutskiy Proezd, 5, 109428, Russia.
| | - Irina Kotova
- Department of Biology, Lomonosov Moscow State University; Moscow, Leninskie Gory, 1, 12, 119899, Russia.
| | - Svetlana Shekhurdina
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences; Moscow, Leninsky Prospekt, 33, 2, 119071, Russia; Department of Biology, Lomonosov Moscow State University; Moscow, Leninskie Gory, 1, 12, 119899, Russia.
| | - Aleksandra Laikova
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences; Moscow, Leninsky Prospekt, 33, 2, 119071, Russia; Department of Biology, Lomonosov Moscow State University; Moscow, Leninskie Gory, 1, 12, 119899, Russia.
| | - Anatoly Krasnovsky
- National Research Tomsk State University, Tomsk, Lenin Ave., 36, 634050, Russia.
| | - Timur Pygamov
- Gubkin University, Moscow, Leninsky Prospekt, 65, 119991, Russia.
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of China's Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuriy Litti
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences; Moscow, Leninsky Prospekt, 33, 2, 119071, Russia.
| |
Collapse
|
6
|
Liao R, Song Z, Zhang J, Xing D, Yan S, Dong W, Sun F. Pilot-scale treatment of municipal garbage mechanical dewatering wastewater by an integrated system involving partial nitrification and denitrification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117088. [PMID: 36584508 DOI: 10.1016/j.jenvman.2022.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The municipal solid waste (MSW) with high water content can be pre-treated by the mechanical dewatering technology to significantly decrease the leachate generation in sequential landfill treatment or to improve the efficiency for solid waste incineration, which has attracted great concerns recently. However, the generated mechanical dewatering wastewater (MDW) containing high organics and nitrogenous content has been one of the big challenges for the sustainable treatment of MSW. In this study, a pilot-scale integrated system composed of physiochemical pretreatment, anaerobic sequencing batch reactor (ASBR), partial nitrification SBR (PN-SBR), denitrification SBR (DN-SBR), and UV/O3 advanced oxidation process, with a capacity of 1.0 m3/d to treat MDW containing over 34000 mg-chemical oxygen demand (COD)/L organics pollutant and 850 mg/L NH4+-N, was successfully developed. By explorations on the start-up of this integrated system and the process conditions optimization, after a long-term system operation, the findings demonstrated that this integrated system could reach the removal efficiency in the COD, NH4+-N and total nitrogen (TN) in the MDW of 99.7%, 98.2% and 96.9%, respectively. Partial nitrification and denitrification were successfully obtained for the TN removal with the nitrite accumulation rate of over 80%. The treatment condition parameters were optimized to be 800 mg/L polyaluminum chloride (PAC) and 2 mg/L polyacrylamide (PAM) under a pH of 9 for pretreatment, 36 h hydraulic retention time (HRT) for ASBR, 24 h for PN-SBR, and 2 h for UV/O3 unit. The organic sources in the MDW were also found to be feasible for the DN-SBR. Consequently, the resulting final effluent was stably in compliance with the discharge standard with high stability and reliability.
Collapse
Affiliation(s)
- Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zi Song
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jianjun Zhang
- Shenzhen Municipal Design & Research Institute Co. Ltd., China
| | - Dingyu Xing
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Sibo Yan
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
7
|
Song Y, Pei L, Chen G, Mu L, Yan B, Li H, Zhou T. Recent advancements in strategies to improve anaerobic digestion of perennial energy grasses for enhanced methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160552. [PMID: 36511320 DOI: 10.1016/j.scitotenv.2022.160552] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Perennial energy grasses (PEGs) are supposed to be a momentous heading to the development of biomass energy on account of their characteristic superiorities of high yield, strong adaptability and no direct competition with food crops. Anaerobic digestion of PEGs with great biogas-producing potential occupies an irreplaceable status despite a variety of pathways for conversion to renewable energy. However, efficient digestion of PEGs suffers from severe challenges in connection with feedstock properties such as recalcitrant structures. This review highlights recent research in anaerobic digestion of PEGs and focuses on essential aspects enhancing anaerobic digestion performance: types and properties of grasses, diverse pretreatments, various co-feedstocks for co-digestion, dosing of different additives, and improvements in reactors. General discussions on the future prospects of anaerobic digestion of PEGs are proposed. Overcoming knowledge gaps and technical limitations will facilitate further application of PEGs on an industrial scale.
Collapse
Affiliation(s)
- Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Legeng Pei
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongji Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Teng Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Johnravindar D, Kumar R, Luo L, Jun Z, Manu MK, Wang H, Wong JWC. Influence of inoculum-to-substrate ratio on biogas enhancement during biochar-assisted co-digestion of food waste and sludge. ENVIRONMENTAL TECHNOLOGY 2023:1-13. [PMID: 36546529 DOI: 10.1080/09593330.2022.2161949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
High accumulation of volatile fatty acids (VFAs) is one of the major concerns during mesophilic anaerobic co-digestion of food waste (FW) and sewage sludge (SS). Therefore, improving the stability of the anaerobic digestion process could surpass quick acidification while accelerating methanogenesis. In this study, the suitability of biochar-assisted co-digestion was evaluated at different inoculum and substrate ratios (I/S ratios: 0.1, 0.3, 0.6, and 0.9). The maximum methane yield of 256.85 mL/gVSadd was observed at an I/S ratio of 0.6. The results indicated fast volatile solid removal (∼ 47.17% to 73%) and a critical role of biochar addition in alleviating the underlying inhibitions. Substantial changes in the microbial community composition including Methanosata, Methanobrevibacter, and Methanosarcina were also observed which predominated and stabilised the methanogenesis process at higher I/S ratios. These results emphasised that the anaerobic co-digestion of FW/sludge is a promising approach, wherein the biochar amendment at different I/S ratios should be well maintained to avoid inhibitions from excess microbial VFA acidification of organic waste feedstocks.
Collapse
Affiliation(s)
- Davidraj Johnravindar
- Department of Biology, Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Rajat Kumar
- Department of Biology, Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Liwen Luo
- Department of Biology, Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zhao Jun
- Department of Biology, Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - M K Manu
- Department of Biology, Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, People's Republic of China
| | - Jonathan W C Wong
- Department of Biology, Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
9
|
Guo Z, Jalalah M, Alsareii SA, Harraz FA, Thakur N, Salama ES. Biochar addition augmented the microbial community and aided the digestion of high-loading slaughterhouse waste: Active enzymes of bacteria and archaea. CHEMOSPHERE 2022; 309:136535. [PMID: 36150484 DOI: 10.1016/j.chemosphere.2022.136535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The biogas production (BP), volatile fatty acids (VFAs), microbial communities, and microbes' active enzymes were studied upon the addition of biochar (0-1.5%) at 6% and 8% slaughterhouse waste (SHW) loadings. The 0.5% biochar enhanced BP by 1.5- and 1.6-folds in 6% and 8% SHW-loaded reactors, respectively. Increasing the biochar up to 1.5% caused a reduction in BP at 6% SHW. However, the BP from 8% of SHW was enhanced by 1.4-folds at 1.5% biochar. The VFAs production in all 0.5% biochar amended reactors was highly significant compared to control (p-value < 0.05). The biochar addition increased the bacterial and archaeal diversity at both 6% and 8% SHW loadings. The highest number of OTUs at 0.5% biochar were 567 and 525 in 6% and 8% SHW, respectively. Biochar prompted the Clostridium abundance and increased the lyases and transaminases involved in the degradation of lipids and protein, respectively. Biochar addition improved the Methanosaeta and Methanosphaera abundance in which the major enzymes were reductase and hydrogenase. The archaeal enzymes showed mixed acetoclastic and hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Zhaodi Guo
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Saudi Arabia
| | - Nandini Thakur
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China; MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| |
Collapse
|
10
|
Johnravindar D, Wong JWC, Dharma Patria R, Uisan K, Kumar R, Kaur G. Bioreactor-scale production of rhamnolipids from food waste digestate and its recirculation into anaerobic digestion for enhanced process performance: Creating closed-loop integrated biorefinery framework. BIORESOURCE TECHNOLOGY 2022; 360:127578. [PMID: 35798165 DOI: 10.1016/j.biortech.2022.127578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Reaching industrially relevant productivities in bioprocesses and their efficient integration in the existing industrial infrastructure remain as important challenges in the circular economy to create closed loop sustainability framework. Using anaerobic digestion (AD) biorefinery as a model, the present work addressed these problems via integration of next-generation rhamnolipids production with AD. A high rhamnolipids concentration of 10.25 ± 1.34 g/L was obtained by fed-batch fermentation using food waste digestate as medium. Digestate-derived rhamnolipids contained Rha-C10-C10 and Rha-Rha-C10-C10 as the predominant congeners. These were used back in single-phase AD to demonstrate their effect on sludge solubilization and digestion efficiency. A dosage of 0.02 g rhamnolipids/g total suspended solids was found to be optimal which enhanced the hydrolysis-acidogenesis reactions to up to 27% over control. It however retarded methane production which could be overcome by the prolongation of digestion time. Finally, the value chain appreciation by the proposed process was demonstrated by a feasibility analysis.
Collapse
Affiliation(s)
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong; Institute of Bioresources and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Hong Kong
| | | | - Kristiadi Uisan
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Guneet Kaur
- Department of Biology, Hong Kong Baptist University, Hong Kong; Institute of Bioresources and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Hong Kong; Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario MP3 1J3, Canada.
| |
Collapse
|
11
|
Liang J, Luo L, Wong JWC, He D. Recent advances in conductive materials amended anaerobic co-digestion of food waste and municipal organic solid waste: Roles, mechanisms, and potential application. BIORESOURCE TECHNOLOGY 2022; 360:127613. [PMID: 35840024 DOI: 10.1016/j.biortech.2022.127613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Recently, conductive materials (i.e., carbon-based and iron-based materials) as a feasible and attractive approach have been introduced to anaerobic co-digestion (ACoD) system for promoting its performance and stability through direct interspecies electron transfer. Owing to the key roles of conductive materials in ACoD process, it is imperative to gain a profound understanding of their specific functions and mechanisms. Here, this review critically examined the state of the art of conductive materials assisted ACoD of food waste and common municipal organic solid waste. Then, the fundamental roles of conductive materials on ACoD enhancement and the relevant mechanisms were discussed. Last, the perspectives for co-digestate treatment, reutilization, and disposal were summarized. Moreover, the main challenges to conductive materials amended ACoD in on-site application were proposed and the future remarks were put forward. Collectively, this review poses a scientific basis for the potential application of conductive materials in ACoD process in the future.
Collapse
Affiliation(s)
- Jialin Liang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; School of Technology, Huzhou University, Huzhou 311800, China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Effect of Volatile Fatty Acids Accumulation on Biogas Production by Sludge-Feeding Thermophilic Anaerobic Digester and Predicting Process Parameters. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sewage sludge represents an important resource for reuse in the wastewater treatment field. Hence, thermophilic anaerobic digestion (TAD) could be an alternative technique to recover renewable resources from sludge. In the TAD biodegradation process, volatile fatty acids (VFAs) are the intermediate products of methanogenesis. However, the higher formation and accumulation of VFAs leads to microbial stress, resulting in acidification and failure of the digester. Therefore, several batch TADs have been investigated to evaluate the VFAs production from sludge and their impact on biogas generation and biodegradation efficiency. Three types of sewage sludges, e.g., primary sludge (PS), secondary sludge (SS), and mixed sludge (MS) were used as substrates to estimate the accumulation of VFAs and yield of methane gas. The system showed the maximum total VFAs accumulation from both PS and MS as 824.68 ± 0.5 mg/L and 236.67 ± 0.5 mg/L, respectively. The dominant VFA accumulation was identified as acetic acid, the main intermediate by-product of methane production. The produced biogas from PS and MS contained 66.75 ± 0.5% and 52.29 ± 0.5% methane, respectively. The high content of methane with PS-feeding digesters was due to the higher accumulation of VFAs (i.e., 824.68 ± 0.5 mg/L) in the TAD. The study also predicted the design parameters of TAD process by fitting the lab-scale experimental data with the well-known first-order kinetic and logistic models. Such predicted design parameters are significantly important before the large-scale application of the TAD process.
Collapse
|
13
|
Sun C, Guo L, Zheng Y, Yu D, Jin C, Zhao Y, Yao Z, Gao M, She Z. Effect of mixed primary and secondary sludge for two-stage anaerobic digestion (AD). BIORESOURCE TECHNOLOGY 2022; 343:126160. [PMID: 34678447 DOI: 10.1016/j.biortech.2021.126160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
As an energy-efficient and eco-friendly sludge treatment process, two-stage anaerobic digestion (AD) is widely employed to recovery biomass energy from waste sludge. However, the effect of primary and secondary sludge for two-stage AD was not clear. In this study, two-stage AD of mixed sludge in different volume ratio was investigated. The maximum cumulative H2 yield (100.5 ml) and CH4 yield (2643.6 ml) were obtained in volume ratio of 1:3 (primary sludge: secondary sludge). In two-phase AD, mixed sludge could induce positive effect on both organics releasing in extracellular polymeric substances (EPS) and the utilization of volatile fatty acids (VFAs). By investigating the compositional characteristics of dissolved organic matters (DOM) through excitation-emission matrix (EEM) coupling with fluorescence regional integration (FRI), it revealed more degradable substances utilization in mixture of sludge. Results from this work suggest that two-phase AD with mixed sludge is efficient for renewable energy recovery.
Collapse
Affiliation(s)
- Cheng Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China.
| | - Yongkang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Dan Yu
- QingDao Municipal Engineering Design Research Institute, Qingdao 266100, PR China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhiwen Yao
- QingDao Municipal Engineering Design Research Institute, Qingdao 266100, PR China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
14
|
Song S, Lim JW, Lee JTE, Cheong JC, Hoy SH, Hu Q, Tan JKN, Chiam Z, Arora S, Lum TQH, Lim EY, Wang CH, Tan HTW, Tong YW. Food-waste anaerobic digestate as a fertilizer: The agronomic properties of untreated digestate and biochar-filtered digestate residue. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:143-152. [PMID: 34666296 DOI: 10.1016/j.wasman.2021.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion produces large quantities of digestate as a by-product, which can potentially be applied as an organic fertilizer, but untreated anaerobic digestate (AD) may contain phytotoxins and the large volume of AD makes transportation and storage difficult. This study explored two relatively inexpensive processing methods to improve the agronomic performance of AD as a fertilizer via vegetable cultivation experiments. We first investigated the effect of dilution on AD's performance using four leafy vegetables (Chinese spinach, water spinach, Chinese cabbage and lettuce). The optimal concentrations of the AD were 20-40% (v/v in 250 mL applications per single-plant pot) for all four vegetables based on shoot fresh weight and comparable to the control treatment using commercial fertilizer. AD application also introduced Synergistetes bacteria into the growing medium, but the overall bacterial diversity and composition were similar to those of the control treatment. Considering the nutrient separation in the liquid and solid fractions of AD and the need to reduce the volume, we then experimented with the recovery of nutrients from both the liquid and solid fractions by filtering AD using two types of wood-based biochar (100 g biochar: 1 L AD) before applying the AD-biochar residues as side dressing at 1% (w/w). Both types of biochar achieved yields comparable to the treatment using a commercial fertilizer for the three vegetables tested (kale, lettuce and rocket salad). Our results show that dilution and biochar filtration can improve the agronomic performance of AD, making it a sustainable substitute for commercial fertilizer.
Collapse
Affiliation(s)
- Shuang Song
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jun Wei Lim
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Jia Chin Cheong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sherilyn H Hoy
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qiang Hu
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Jonathan K N Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhongyu Chiam
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Srishti Arora
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tiffany Q H Lum
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ee Yang Lim
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore
| | - Chi-Hwa Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore.
| |
Collapse
|