1
|
Britten N, Mahendran S. Environmental sustainability and ruminant production: A UK veterinary perspective. Vet Rec 2024:e4703. [PMID: 39327698 DOI: 10.1002/vetr.4703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Environmental sustainability is an issue of growing importance within the livestock industry, particularly for farmed ruminants. Changes to farming practices made to improve sustainability can have an impact on the health and welfare of animals, and so become the concern of veterinary practitioners. This review outlines the metrics used to measure sustainability and how sustainability interacts with ruminant health and welfare, allowing practitioners to incorporate environmental considerations into their existing livestock work. Topics covered include nutrition, disease control, genetics and stocking density.
Collapse
Affiliation(s)
- Nick Britten
- Royal Veterinary College, Hatfield, UK
- Synergy Farm Health, Rampisham Down, UK
| | | |
Collapse
|
2
|
Rizwan M, Tanveer H, Ali MH, Sanaullah M, Wakeel A. Role of reactive nitrogen species in changing climate and future concerns of environmental sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51147-51163. [PMID: 39138725 DOI: 10.1007/s11356-024-34647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
The nitrogen (N) cycle is an intricate biogeochemical process that encompasses the conversion of several chemical forms of N. Given its role in food production, the need for N for life on Earth is obvious. However, the release of reactive nitrogen (Nr) species throughout different biogeochemical processes contributes to atmospheric pollution. Several human activities generate many species, including ammonia, nitrous oxide (N2O), nitric oxide, and nitrate. The primary reasons for this change are the use of nitrogen-based fertilizers, industrial activities, and the burning of fossil fuels. N2O poses a significant threat to environmental sustainability on our planet, with its global warming potential approximately 298 times greater than that of CO2. It has direct or indirect impacts on the environment, agroecosystem, and human life on earth. Solar, hydroelectric, geothermal, and wind turbines must be used to reduce Nr emissions. In addition, enterprises should install catalytic converters to minimize nitrogen gas emissions. To reduce Nr emissions, strategic interventions like fertilizer balancing are needed. This work will serve as a comprehensive guide for researchers, academics, and policymakers. Additionally, it will also assist social workers in emphasizing the Nr issue to the public in order to raise awareness within worldwide society.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Hurain Tanveer
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Hayder Ali
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Science, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
3
|
Idowu M, Taiwo G, Sidney T, Treon E, Leal Y, Ologunagba D, Eichie F, Pech-Cervantes A, Ogunade IM. Effects of rumen-bypass protein supplement on growth performance, hepatic mitochondrial protein complexes, and hepatic immune gene expression of beef steers with divergent residual feed intake. PLoS One 2024; 19:e0293718. [PMID: 38959213 PMCID: PMC11221652 DOI: 10.1371/journal.pone.0293718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 07/05/2024] Open
Abstract
We investigated the impact of a rumen-bypass protein (RBP) supplement on growth performance, plasma and urinary N (UN) concentration, hepatic mitochondrial protein complexes, and hepatic mRNA expression of immune genes of beef steers with negative or positive residual feed intake (RFI) phenotype. Forty crossbred beef steers with an average body weight (BW) of 492 ± 36 kg were subjected to a generalized randomized block design over a 42-day experimental period. This study followed a 2 × 2 factorial arrangement of treatments. The factors evaluated were: 1) RFI classification (low-RFI (-2.12 kg/d) vs. high-RFI (2.02 kg/d), and 2) rumen-bypass protein supplement: RBP supplement (RBP; 227 g/steer/d) vs. control diet (CON; 0 g/d), resulting in four distinct treatments: LRFI-CON (n = 10), LRFI-RBP (n = 10), HRFI-CON (n = 10), and HRFI-RBP (n = 10). The RBP supplement (84% crude protein) is a mixture of hydrolyzed feather meal, porcine blood meal, and DL-methionine hydroxy analogue. The beef steers were stratified by BW, randomly assigned to treatments, and housed in four pens (1 treatment/pen) equipped with two GrowSafe feed bunks each to measure individual dry mater intake (DMI). Body weight was measured every 7 d. Liver tissue samples were collected on d 42 from all the beef steers. These samples were used for mRNA expression analysis of 16 immune-related genes and for evaluating the mitochondrial protein complexes I - V. No significant effects due to RBP supplementation or RFI × RBP interactions (P > 0.05) were observed for average daily gain (ADG) and DMI. However, compared to high-RFI steers, low-RFI steers showed a trend towards reduced DMI (12.9 vs. 13.6 kg/d; P = 0.07) but ADG was similar for the two RFI groups. Regardless of RFI status, supplemental RBP increased blood urea nitrogen (BUN) (P = 0.01), with a lower BUN concentration in low-RFI steers compared to high-RFI ones. A tendency for interaction (P = 0.07) between RFI and RBP was detected for the UN concentrations; feeding the dietary RBP increased the UN concentration in high-RFI beef steers (209 vs. 124 mM), whereas the concentration was lower than that of the CON group for low-RFI beef steers (86 vs. 131 mM). Interactions of RBP and RFI were observed (P ≤ 0.05) for mitochondrial activities of complexes IV, V, and mRNA expressions of some immune genes such as TLR2, TLR3, and IL23A. In conclusion, while RBP supplementation did not alter growth performance, its observed effects on hepatic immune gene expression, mitochondrial protein complexes, BUN, and UN depended on the beef steers' RFI phenotype. Therefore, the RFI status of beef steers should be considered in future studies evaluating the effects of dietary protein supplements.
Collapse
Affiliation(s)
- Modoluwamu Idowu
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Godstime Taiwo
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Taylor Sidney
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emily Treon
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Yarahy Leal
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Deborah Ologunagba
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Francisca Eichie
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Andres Pech-Cervantes
- Division of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Ibukun M. Ogunade
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
4
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Buryakov NP, Aleshin DE, Buryakova MA, Zaikina AS, Medvedev IK, Zemyachkovskaya DA, Laptev GY, Ilina LA, El Sheikh AI, Fathala MM, Sahwan FM. An Investigation on the Effects of Partial Replacement of Rapeseed Cake in Ayrshire Dairy Heifers' Diets with By-Product Source of Animal Protein on Body Weight Dynamics, Nutrient Balancing, and Blood Biochemical Markers. Animals (Basel) 2023; 13:1856. [PMID: 37889774 PMCID: PMC10251835 DOI: 10.3390/ani13111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 10/29/2023] Open
Abstract
Recently, the secondary use of by-products of the processing industry resulting from the production of poultry meat, which can be included in animal diets, has become a popular topic in the feed industry. For studying the effects of partial replacement of rapeseed cake (RC) with the by-product source of animal protein concentrate Agro-Matic (PCAM) on growth dynamics, nutrient absorption and nitrogen balance, as well as blood biochemical parameters during the growing period, a total of 48 Russian Ayrshire dairy heifers were selected for this experiment and they were divided into three experimental groups (16 in each group, including the control group). The heifers of the control group were fed the basal diet which contained rapeseed cake (30%), while the second (RC + PCAM) and third groups (PCAM + RC) were fed the basal diet after replacing a part of the rapeseed cake with 2.25% and 4.5% of protein concentrate Agro-Matic respectively. The results showed that the weight of heifers treated with PCAM at 3 months of age exceeded the control by 2.3 kg (p > 0.05) in group 2 by 4.4 kg (p < 0.05). Similar results were obtained at the age of 6 months of raising. Feeding 4.50% protein concentrate Agro-Matic has a positive effect on the digestibility of nutrients; in particular, there was a significant increase in the digestibility of crude protein in the PCAM + RC group (77.23 vs. 73.42%) compared with the control group. Moreover, a similar trend was found in the digestibility of nitrogen in the diet. At the age of 3 months, heifers showed a significant decrease in the concentration of ketone bodies in the second group (1.82 vs. 2.20 mmol/L) relative to the control group. Urea was significantly lower in the RC + PCAM group (5.05 vs. 6.62 mmol/L) relative to the PCAM + RC group, while acid capacity (alkaline reserve) was higher by 2.41% (p < 0.05) relative to the control. In the 10th month of age, a positive effect on the blood of heifers was observed, as in the second and the third experimental groups, β-globulin and phosphorus increased (p < 0.05), while in the second group aspartate aminotransferase decreased (p < 0.05). Consequently, replacing the rapeseed cake with the protein concentrate Agro-Matic revealed an improvement in the dynamics of growth, nutrient digestibility and nitrogen balance, and it has an effect on improving some biochemical parameters of the blood.
Collapse
Affiliation(s)
- Nikolai P. Buryakov
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127434, Russia
| | - Dmitrii E. Aleshin
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127434, Russia
| | - Maria A. Buryakova
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127434, Russia
- Department of Physiology, Ecology and Biochemistry of Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127434, Russia
| | - Anastasiya S. Zaikina
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127434, Russia
| | - Ivan K. Medvedev
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127434, Russia
| | - Darya A. Zemyachkovskaya
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127434, Russia
- Limited Liability Company A-1 First Genetic Company, Mironovskaya 33, p. 11, Moscow 105187, Russia
| | - Georgy Y. Laptev
- Molecular Genetic Laboratory, BIOTROF+ Ltd., Pushkin, Saint-Petersburg 196650, Russia
- Department of Large Animal Husbandry, Faculty of Bioengineering and Biotechnology, Saint-Petersburg State Agrarian University, Pushkin, Saint-Petersburg 196601, Russia
| | - Larisa A. Ilina
- Molecular Genetic Laboratory, BIOTROF+ Ltd., Pushkin, Saint-Petersburg 196650, Russia
- Department of Large Animal Husbandry, Faculty of Bioengineering and Biotechnology, Saint-Petersburg State Agrarian University, Pushkin, Saint-Petersburg 196601, Russia
| | - Ahmed I. El Sheikh
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Saudi Arabia
| | - Mohamed M. Fathala
- Department of Feeding Animals, Institute of Animal Science and Biology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127434, Russia
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Bab Sharqi 5424041, Egypt
| | - Ferial M. Sahwan
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Bab Sharqi 5424041, Egypt
| |
Collapse
|
6
|
Hoe Tay J, Asib N, Abd Aziz NA, Hun Tan G. Biodegradation of Expanded and Extruded Polystyrene with Different Diets by Using Zophobas atratus Larvae (Coleoptera: Tenebrionidae). PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2023; 46:459-483. [DOI: 10.47836/pjtas.46.2.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Polystyrene waste pollutes the environment and poses a significant health risk to humans, animals, and marine ecology. This study aims to evaluate the effectiveness of degradation on expanded (EPS) and extruded (XPS) polystyrene with different diets using superworms (Zophobas atratus larvae) obtained in Malaysia. The growth and development of the larvae after consumption of EPS and XPS and the gut microbial community changes in response to high polystyrene consumption diets were also identified. The oatmeal, wheat bran, and cornmeal were used as supplement diets and showed significantly enhanced EPS and XPS consumption and degradation compared to sole diet treatment. Gel permeation chromatography was carried out using egested frass of Z. atratus larvae to characterize depolymerization of EPS and XPS, indicating a significant reduction in the average molecular weight and average molecular weight. The highest reduction occurred in the presence of oatmeal. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy analyses indicated functional group changes and chemical modification occurred with depolymerization and partial oxidation of EPS and XPS. The larvae length increased, while the number of instars and duration of larvae became shorter with the addition of supplement diets. Oatmeal is predominantly effective among other supplements in assisting Z. atratus larvae with EPS and XPS degradation. The results of this study support the ubiquity of polystyrene biodegradation in Z. atratus and the next-generation sequencing studies. Kluyvera sp., Klebsiella sp., and Enterobacter sp. were found to be strongly associated with degrading EPS and XPS polystyrene with oatmeal as a supplemental diet.
Collapse
|
7
|
Puertas R, Marti L, Calafat C. Agricultural and innovation policies aimed at mitigating climate change. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47299-47310. [PMID: 36738416 PMCID: PMC10097757 DOI: 10.1007/s11356-023-25663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The EU supports agricultural policies to help farmers meet the challenges of climate change (CC) by promoting more sustainable and environmentally friendly practices. This study focuses on the European primary sector (agriculture, forestry, and fisheries), productive activities that meet humanity's basic needs, although this sector does not account for a dominant share of GDP. The analysis uses a panel data sample of 22 European countries for the period 2012-2019, and seeks to answer the following research questions: Is there a direct relationship between agricultural innovation efficiency and the technological advances implemented? What effect do GHG emissions and innovation efficiency have on CC? Which agricultural practices have the greatest effect on the volume of GHG emissions? The results indicate that the European primary sector has registered an average rise in productivity of 4%, mainly driven by technological improvements. This underscores the need for agricultural innovation policies that focus not only on improving aspects related to technology but also on making better use of existing resources. In addition, the econometric models estimated confirm that efficiency levels are the most influential determinants of temperature change, while GHG emissions are primarily explained by their own historical values. Ultimately, research and development is a tool that can be used to curb CC, along with the proper use of land and fertilizers. There is thus a need to foster novel agricultural practices that help reduce emissions while ensuring the efficiency of the sector.
Collapse
Affiliation(s)
- Rosa Puertas
- Group of International Economics and Development, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
- Departamento de Economía Y Ciencias Sociales, Universitat Politècnica de València, Valencia, Spain
| | - Luisa Marti
- Group of International Economics and Development, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Consuelo Calafat
- Group of International Economics and Development, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| |
Collapse
|
8
|
Kadawarage RW, Dunislawska A, Siwek M. Ecological footprint of poultry production and effect of environment on poultry genes. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The growing demand for poultry meat and eggs has forced plenty of changes in poultry production in recent years. According to FAO, the total number of poultry in the world in 2019 was 27.9 billion. About 93% of them are chickens. The number of chickens has doubled in the last 30 years. These animals are the most numerous in Asia and America. Hence, poultry meat is the most frequently obtained type of meat in recent years (it is 40.6% of the obtained meat). Focusing on lowering production costs has led to process optimization, which was possible by improving the use of animal genetics, optimizing feeding programs, and new production technologies. The applied process optimization and production increase practices may also lead to a deterioration of the ecological balance through pollution with chemical substances, water consumption, and natural resources. The aim of this paper was to review the current state of knowledge in the field of the ecological footprint of poultry production and the impact on environmental genes.
Collapse
Affiliation(s)
- Ramesha Wishna Kadawarage
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
9
|
Rodrigues ARF, Maia MRG, Miranda C, Cabrita ARJ, Fonseca AJM, Pereira JLS, Trindade H. Ammonia and greenhouse emissions from cow's excreta are affected by feeding system, stage of lactation and sampling time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115882. [PMID: 35952566 DOI: 10.1016/j.jenvman.2022.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Decomposition of dairy cows' excreta on housing floor leads to ammonia and greenhouse gases production, yet factors affecting total emissions have not been fully disclosed. This work aimed to assess the impact of lactation stage, feeding system and sampling time on gaseous emission potential of cow's faeces and urine in laboratory chambers systems. Individual faeces and urine were collected from two groups of four cows, at peak and post peak lactation, from three commercial farms with distinct feeding systems: total mixed ration (TMR), total mixed ration plus concentrate at robot (TMR + robot), and total mixed ration plus concentrate in automatic feeders (TMR + AF). Samples were collected before a.m. (T8h), at middle day (T12h), and before p.m. (T17h) milking. In a laboratory chambers system, faeces and urine were mixed in a ratio of 1.7:1, and ammonia and greenhouse gases emissions were monitored during 48-h. Cumulative N-N2O emissions were the highest in TMR + robot system, post peak cows and sampling time T17h. An interaction between stage of lactation and sampling time was detected for N-NH3 and N-N2O (g/kg organic soluble N) emissions. Post peak cows also produced the highest cumulative N-NH3 emissions. Overall results contribute for the identification of specific on-farm strategies to reduce gaseous emissions from cows' excreta.
Collapse
Affiliation(s)
- Ana R F Rodrigues
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Margarida R G Maia
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Carla Miranda
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana R J Cabrita
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - António J M Fonseca
- REQUIMTE, LAQV, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - José L S Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal; Agrarian School of Viseu, Polytechnic Institute of Viseu, Quinta da Alagoa, 3500-606, Viseu, Portugal
| | - Henrique Trindade
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
10
|
Hanif S, Lateef M, Hussain K, Hyder S, Usman B, Zaman K, Asif M. Controlling air pollution by lowering methane emissions, conserving natural resources, and slowing urbanization in a panel of selected Asian economies. PLoS One 2022; 17:e0271387. [PMID: 35984821 PMCID: PMC9390938 DOI: 10.1371/journal.pone.0271387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The destruction of the earth's ecosystems is the most pressing issue globally. Carbon emissions account for nearly half of global air pollution. Methane is the primary source of ground-level ozone and a significant source of greenhouse gases (GHGs), with greater warming potential than carbon dioxide emissions. The study examines the impact of the different methane emissions (released by agriculture, energy, and industrial sectors), urbanization, natural resource depletion, and livestock production on carbon emissions in the panel of selected Asian countries for the period of 1971 to 2020. The results show that energy associated methane emissions, livestock production, natural resource depletion, and urbanization are the main detrimental factors of environmental degradation across countries. The causality estimates show the unidirectional relationship running from livestock production and agriculture methane emissions to carbon emissions, from total methane emissions and carbon emissions to urbanization and from urbanization to energy methane emissions and livestock production. The forecasting estimates suggest that total methane emissions, natural resource depletion, and urbanization will likely increase carbon emissions over the next ten years. The study concludes that the energy sector should adopt renewable energy sources in its production process to minimize carbon emissions. Urbanization and excessive resource exploitation must be curtailed to attain carbon neutrality.
Collapse
Affiliation(s)
- Sadoon Hanif
- Department of Economics, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Majid Lateef
- College of International Education, Baise University, Baise, Guangxi, China
| | - Kamil Hussain
- Department of Management Sciences, University of Wah, Wah Cantt, Pakistan
| | - Shabir Hyder
- Department of Management Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Bushra Usman
- School of Management, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Khalid Zaman
- Department of Economics, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Asif
- Department of Business Administration, Air University, Multan, Pakistan
| |
Collapse
|
11
|
Anyshchenko A. Aligning Policy Design With Science to Achieve Food Security: The Contribution of Genome Editing to Sustainable Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.897643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The need to meet the food demands of the world's growing population is the main challenge to global agricultural policy and economy. Issues in food security require innovative solutions. Modern biotechnology has a significant potential to contribute to food security, wealth, and sustainable development. Genetic engineering offers tools to improve nutrition, increase yield, and enhance crop resilience. New techniques of genome editing provide ample means to overcome limitations inherent in conventional plant breeding, but their industrial applicability depends on regulatory environment, decision making, and public perception. An alignment of goals between science and policy can help realise the potential of modern biotechnology to contribute to food security, wealth, and sustainable development.
Collapse
|
12
|
Buryakov N, Aleshin D, Buryakova M, Zaikina A, Nasr M, Nassan M, Fathala M. Productive Performance and Blood Biochemical Parameters of Dairy Cows Fed Different Levels of High-Protein Concentrate. Front Vet Sci 2022; 9:852240. [PMID: 35478605 PMCID: PMC9036063 DOI: 10.3389/fvets.2022.852240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the productive traits and some blood biochemical parameters of high-yielding Ayrshire dairy cows fed at different levels of Agro-Matic@LLC NGO, Russia (Agro-Matic (AM)) protein concentrate. A total of 45 high-yielding Ayrshire cows were selected and divided into three groups, each 15. The control group (0AM) fed the basal ration, while group two (1AM) and group three (2AM) fed a basal ration by replacing sunflower cake with different levels of AM (1 and 1.5 kg/head/day), respectively. Milk and blood samples were collected. The current results revealed that the ratio of rumen undegradable protein to rumen degradable protein during the period of lactation was significantly higher in the 1AM and 2AM compared with 0AM and represented (55.04, 62.14, and 41.73%), respectively. The 1AM had a beneficial effect on the digestibility of crude protein. Daily and whole fat-corrected milk (FCM 4 %) was significantly increased by 3 kg/day and 987 kg/entire lactation in 2AM when compared with 0AM, respectively. Blood total protein was significantly higher in the 1AM group (86.9 vs. 77.8 g/l) than the 0AM, while AM decreased urea concentration. Consequently, the inclusions of AM protein concentrate have a positive impact on increasing milk production and optimizing the rations in terms of the amount of non-digestible protein and the economic efficiency of milk production.
Collapse
Affiliation(s)
- Nikolai Buryakov
- Department of Animal Feeding, Institute of Animal Science and Biology, Federal State Budgetary Educational Institution of Higher Education ‘Russian State Agrarian University, Moscow Timiryazev Agricultural Academy', Moscow, Russia
| | - Dmitrii Aleshin
- Department of Animal Feeding, Institute of Animal Science and Biology, Federal State Budgetary Educational Institution of Higher Education ‘Russian State Agrarian University, Moscow Timiryazev Agricultural Academy', Moscow, Russia
| | - Maria Buryakova
- Department of Animal Feeding, Institute of Animal Science and Biology, Federal State Budgetary Educational Institution of Higher Education ‘Russian State Agrarian University, Moscow Timiryazev Agricultural Academy', Moscow, Russia
| | - Anastasya Zaikina
- Department of Animal Feeding, Institute of Animal Science and Biology, Federal State Budgetary Educational Institution of Higher Education ‘Russian State Agrarian University, Moscow Timiryazev Agricultural Academy', Moscow, Russia
| | - Mohammed Nasr
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Mohammed Nasr ;
| | - Mohamed Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Mohamed Fathala
- Department of Animal Feeding, Institute of Animal Science and Biology, Federal State Budgetary Educational Institution of Higher Education ‘Russian State Agrarian University, Moscow Timiryazev Agricultural Academy', Moscow, Russia
- Animal Husbandry and Wealth Development Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Research on the Coordination between Agricultural Production and Environmental Protection in Kazakhstan Based on the Rationality of the Objective Weighting Method. SUSTAINABILITY 2022. [DOI: 10.3390/su14063700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the context of sustainable development, agricultural production and environmental protection are inseparable, and environmental quality directly affects regional agricultural production safety. Kazakhstan is the largest food producer and exporter in Central Asia, and the quality of its agricultural environment is of great significance to international food security. This study focuses on the rationality of the entropy weight, factor weight, and CRITIC weight in the agricultural environmental evaluation within the common objective weight method, and comprehensively evaluates the coordination of environmental protection and agricultural production in Kazakhstan. The results show that (1) CRITIC weights are the most stable, followed by factor weights, while entropy weighting is the most unstable; objective weighting methods have their limitations and must be related to actual conditions and subjective experience. (2) The level of environmental protection and the degree of coordination are most problematic near the Aral Sea, followed by the remaining western region; the results reveal that these evaluation indexs are also insufficient at Kostany and Karagandy in the central region; this is caused by historical issues, climate change, natural conditions, and agricultural management patterns. Investment in environmental protection and agricultural production management should be coordinated in a targeted manner. (3) Except for the areas near the Aral Sea, the level of agricultural production in other states is very promising. This research serves as a reference for environmental assessment research, environmental governance investment, and agricultural production management in Kazakhstan.
Collapse
|
14
|
Zhang W, Butterly C, Han B, He JZ, Chen D. Modified lignite and black coal reduce ammonia volatilization from cattle manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113807. [PMID: 34571475 DOI: 10.1016/j.jenvman.2021.113807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Modified lignite and black coal (BC) are potential amendments for animal bedding to abate ammonia (NH3) emissions due to their large adsorption capacities for ammoniacal nitrogen (N). However, the ability of modified lignite and BC in reducing NH3 volatilization from livestock manure and the underlying mechanisms remain unknown. The present study has investigated the effect of lignite, modified lignite, BC and modified BC on NH3 volatilization from cattle manure, biological immobilization of manure ammoniacal N and manure properties. Modified lignite and BC reduced the NH3 volatilization from manure by 44 and 36%, respectively, which were comparable with original lignite (43%). The biological immobilization of applied stable isotope labelled 15N in lignite, modified lignite, BC and modified BC amended manures was 15, 18, 11 and 16%, respectively, which were significantly higher than that in unamended manure (4%, P < 0.001). In addition, NH4+-N concentrations of lignite, modified lignite and modified BC amended manures (7.0-7.3 mg g-1) were significantly higher than that of the unamended and original BC amended manures (3.3 and 4.8 mg g-1, respectively, P < 0.001). However, the manure pH in all treatments remained alkaline (pH > 8.2). Our results highlight that the adsorption and immobilization of manure ammoniacal N induced by amendments are the key drivers in reducing NH3 loss from manure, outweighing the pH effect. The findings of this study provide new insights into the mechanisms of coal amendments reducing NH3 loss from animal manure and their potential applications in intensive livestock systems.
Collapse
Affiliation(s)
- Wei Zhang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, 3010, Australia
| | - Clayton Butterly
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, 3010, Australia
| | - Bing Han
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, 3010, Australia
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
15
|
Gómez-García R, Campos DA, Aguilar CN, Madureira AR, Pintado M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113571. [PMID: 34488107 DOI: 10.1016/j.jenvman.2021.113571] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Food agro-industrial by-products mainly include peels, seeds, stems, bagasse, kernels, and husk, derived during food processing. Due to their overproduction and the lack of sustainable management, such by-products have been conventionally rejected and wasted in landfills, being the principal strategy for their treatment, but nowadays, this strategy has been associated with several environmental, social and economic issues. Hence, we focused on the use of different consolidated biotechnological processes and methodologies as suitable strategies for food by-products management and valorisation, highlighting them as potential bioresources because they still gather high compositional and nutritional value, owing to their richness in functional and bioactive molecules with human health benefits. Food by-products could be utilised for the development of new food ingredients or products for human consumption, promoting their integral valorisation and reincorporation to the food supply chain within the circular bioeconomy concept, creating revenue streams, business and job opportunities. In this review, the main goal was to provide a general overview of the food agro-industrial by-products utilised throughout the years, improving global sustainability and human nutrition, emphasising the importance of biowaste valorisation as well as the methodologies employed for the recovery of value-added molecules.
Collapse
Affiliation(s)
- Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal; BBG-DIA. Bioprocesses and Bioproducts Group. Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico.
| | - Débora A Campos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Cristóbal N Aguilar
- BBG-DIA. Bioprocesses and Bioproducts Group. Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Ana R Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|