1
|
Mohamed Noor MH, Ngadi N. Ecotoxicological risk assessment on coagulation-flocculation in water/wastewater treatment: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52631-52657. [PMID: 39177740 DOI: 10.1007/s11356-024-34700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
It is undeniable that removal efficiency is the main factor in coagulation-flocculation (C-F) process for wastewater treatment. However, as far as environmental safety is concerned, the ecotoxicological aspect of the C-F process needs to be examined further. In this study, a systematic review was performed based on publications related to the toxicity research in C-F technology for wastewater treatment. Through a series of screening steps, available toxicity studies were categorized into four themes, namely acute toxicity, phytotoxicity, cytotoxicity, and genotoxicity, which comprised 48 articles. A compilation of the methodologies executed for each theme was also outlined. The findings show that conventional metallic coagulants (e.g., alum, iron chloride, and iron sulfate) were less toxic when tested on test species such as Daphnia magna (water flea), Lattuca sativa (lettuce), and animal cells compared to synthetic polymers. Natural coagulants such as chitosan or Moringa oleifera were less toxic compared to metallic coagulants; however, inconsistent results were observed. Moreover, an advanced C-F (electrocoagulation) as well as integration between C-F and Fenton, adsorption, and photocatalytic does not significantly change the toxicological profile of the system. It was found that diverse coagulants and flocculants, species sensitivity, complexity in toxicity testing, and dynamic environmental conditions were some key challenges faced in this field. Finally, it was expected that advances in technology, interdisciplinary collaboration, and a growing awareness of environmental sustainability will drive efforts to develop more effective and eco-friendly coagulants and flocculants, improve toxicity testing methodologies, and enhance the overall efficiency and safety of water and wastewater treatment processes.
Collapse
Affiliation(s)
- Mohamed Hizam Mohamed Noor
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
2
|
Khoza N, Seodigeng T, Banza M, Ochieng A. The impact of ozone treatment on the removal effectiveness of various refractory compounds in wastewater from petroleum refineries. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024:1-11. [PMID: 38733115 DOI: 10.1080/10934529.2024.2348417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Large volumes of wastewater are generated during petroleum refining processes. Petroleum refinery wastewater (PRW) can contain highly toxic compounds that can harm the environment. These toxic compounds can be a challenge in biological treatment technologies due to the effects of these compounds on microorganisms. These challenges can be overcome by using ozone (O3) as a standalone or as a pretreatment to the biological treatment. Ozone was used in this study to degrade the organic pollutants in the heavily contaminated PRW from a refinery in Mpumalanga province of South Africa. The objective was achieved by treating the raw PRW using ozone at different ozone treatment times (15, 30, 45, and 60 min) at a fixed ozone concentration of 3.53 mg/dm3. The ozone treatment was carried out in a 2-liter custom-designed plexiglass cylindrical reactor. Ozone was generated from an Eco-Lab-24 corona discharge ozone generator using clean, dry air from the Afrox air cylinder as feed. The chemical oxygen demand, gas chromatograph characterization, and pH analysis were performed on the pretreated and post-treated PRW samples to ascertain the impact of the ozone treatment. The ozone treatment was effective in reducing the benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds in the PRW. The 60-min ozone treatment of different BTEX pollutants in the PRW resulted in the following percentage reduction: benzene 95%, toluene 77%, m + p-xylene 70%, ethylbenzene 69%, and o-xylene 65%. This study has shown the success of using ozone in reducing the toxic BTEX compounds in a heavily contaminated PRW.
Collapse
Affiliation(s)
- Nkosinathi Khoza
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Tumisang Seodigeng
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Musamba Banza
- Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Aoyi Ochieng
- Department of Chemical, Material and Metallurgical Engineering, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
3
|
Cheng X, Dong H, Qiang Z. Formation and transformation of pre-chlorination-formed disinfection byproducts in drinking water treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166241. [PMID: 37591391 DOI: 10.1016/j.scitotenv.2023.166241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
As pre-chlorination is increasingly adopted in drinking water treatment plant (DWTP), an attractive question emerged: how the disinfection by-products that formed during pre-chlorination (preformed DBPs) would be transformed in the drinking water treatment process? This study investigated the DBP formation kinetics and molecular characteristics in chlorinated source water, DBP transformation and removal in practical DWTP. It was found that the formation of trihalomethanes (THMs) followed pseudo first-order kinetic model and the intensified Br- exposure facilitated the transformation of TCM into TBM. As Br- concentration shifted from 0.5 mg L-1 to 2.0 mg L-1, the predicted maximum yield of TBM was doubled to 53.7 μg L-1 with the increase of formation rate constant (k-value) from 0.249 h-1 to 0.336 h-1. Besides known DBPs, the molecular-scale investigation unveiled that the preformed unknown Cl-DBPs were a cluster of unsaturated aromatic DBPs ((DBE-O)/Cwa = 0.16, AImod, wa = 0.36) with high H/C (H/Cwa = 1.25). Pre-ozonation exhibited a preferential removal pattern towards condensed aromatic preformed Cl-DBPs with high H/C (AImod ≥ 0.67, H/C > 1.2 and O/C < 0.3). However, the removal of Cl-DBPs in coagulation-clarification process was limited with 56 more unknown Cl-DBP formulas identified. O3-biological activated carbon process exhibited effective removal of preformed DBPs featured with low MW (carbon number ≤ 13), high unsaturation (DBE ≥ 7), condensed aromaticity (AImod ≥ 0.67), and higher H/C (H/C > 1.6). When the pre-chlorination process is adopted, the removal of preformed DBPs during the conventional treatment process is limited, while advanced treatment process can effectively remove these preformed DBPs.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Kou Y, Yang B, Jiang J, Sun H, Zhang R, Li Z, Wang Q, Shi Q, Chen C. Characteristics of dissolved organic matter in point-source wastewaters at a petrochemical plant: Molecular constituents and contributions to the influent of wastewater treatment plant. ENVIRONMENTAL RESEARCH 2023; 238:117157. [PMID: 37726030 DOI: 10.1016/j.envres.2023.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Dissolved organic matter (DOM) in point-source petrochemical wastewaters (PCWs) from different operating units is closely linked to the efficiency of wastewater treatment plant (WWTP). However, systematic studies on DOM characters of point-source PCWs and their influences on WWTP influents were seldom conducted. In this study, DOM in three low-salinity point-source PCWs and four high-salinity point-source PCWs at a typical petrochemical plant were comprehensively characterized at a molecular level. Orbitrap mass spectrometry results indicated that point-source PCWs had diverse DOM constituents tightly related to the corresponding petrochemical processes. Phenols in oily wastewaters (OW), phenols and N-containing compounds in coal partial oxidation wastewater (POXW), and naphthenic acids (NAs) and aromatic acids in crude oil electric desalting unit wastewater (EDW) were characteristic DOM constituents for low-salinity point-source PCWs. While S-containing compounds (mercaptans, thiophenes) and NAs in spent caustic liquors (SCL), alcohols and esters in butanol-octanol plant wastewater (BOW), high molecular weight aromatic ketones in phenol-acetone plant wastewater (PAW), and oxygenated NAs as well as short chain N-containing compounds in concentrate from reverse osmosis unit (ROC) were characteristic DOM constituents for high-salinity point-source PCWs. Spearman correlation analysis indicated that though with relative low pollutant contents (OW) and discharge volume (EDW), N/O/S-containing compounds of OW and EDW greatly contributed to the polar DOM constituents of low-salinity influent in WWTP (R > 0.5, P < 0.001). While N-containing compounds of ROC mainly contributed to the polar DOM of high-salinity influent (R > 0.5, P < 0.001). Though N-/S-containing species in PAW had low contents, they also posed obvious impacts on DOM constituents of high-salinity influent. Interestingly, some O-/S-containing species were newly formed during the confluent process of high-salinity point-source PCWs. The results strengthened the combined contributions of pollutants contents, discharge emission and DOM constituents of point-source PCWs to the water matrix of WWTP influents, which would provide reference for the management of PCW streams.
Collapse
Affiliation(s)
- Yue Kou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Baiyu Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Juntao Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - He Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Rui Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhuoyu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
5
|
Geng T, Wang Y, Yin XL, Chen W, Gu HW. A Comprehensive Review on the Excitation-Emission Matrix Fluorescence Spectroscopic Characterization of Petroleum-Containing Substances: Principles, Methods, and Applications. Crit Rev Anal Chem 2023; 54:2827-2849. [PMID: 37155146 DOI: 10.1080/10408347.2023.2205500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Petroleum-containing substance (PCS) is a general term used for petroleum and its derivatives. A comprehensive characterization of PCSs is crucial for resource exploitation, economic development and environmental protection. Fluorescence spectroscopy, especially excitation-emission matrix fluorescence (EEMF) spectroscopy, has been proved to be a powerful tool to characterize PCSs since its remarkable sensitivity, selectivity, simplicity and high efficiency. However, there is a lack of systematic review focusing on this field in the literature. This paper reviews the fundamental principles and measurements of EEMF for characterizing PCSs, and makes a systematic introduction to various information mining methods including basic peak information extraction, spectral parameterization and some commonly used chemometric methods. In addition, recent advances in applying EEMF to characterize PCSs during the whole life-cycle process of petroleum are also revisited. Furthermore, the current limitations of EEMF in the measurement and characterization of PCSs are discussed and corresponding solutions are provided. For promoting the future development of this field, the urgent need to build a relatively complete EEMF fingerprint library to trace PCSs, not only pollutants but also crude oil and petroleum products, is proposed. Finally, the extensions of EEMF to high-dimensional chemometrics and deep learning are prospected, with the expectation of solving more complex systems and problems.
Collapse
Affiliation(s)
- Tao Geng
- Hubei Engineering Research Center for Clean Production and Pollutant Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Yan Wang
- Hubei Engineering Research Center for Clean Production and Pollutant Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Xiao-Li Yin
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wu Chen
- Hubei Engineering Research Center for Clean Production and Pollutant Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing, China
| | - Hui-Wen Gu
- Hubei Engineering Research Center for Clean Production and Pollutant Control of Oil and Gas Fields, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Yang S, Cheng Q, Hu L, Gu Y, Wang Y, Liu Z. Study on the Adsorption Properties of Oxalic Acid-Modified Cordierite Honeycomb Ceramics for Neutral Red Dyes. ACS OMEGA 2023; 8:11457-11466. [PMID: 37008113 PMCID: PMC10061635 DOI: 10.1021/acsomega.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Removal of organic dyes from water by monolithic adsorbents is considered as an efficient and no-secondary pollution method. Herein, for the first time cordierite honeycomb ceramics (COR) treated with oxalic acid (CORA) were synthesized. This CORA exhibits outstanding removal efficiency toward the azo neutral red dyes (NR) from water. After optimizing the reaction conditions, the highest adsorption capacity of 7.35 mg·g-1 and a removal rate of 98.89% could be achieved within 300 min. Furthermore, investigation of the adsorption kinetics indicated this adsorption process could be described as a pseudo-second-order kinetic model with k 2 and q e of 0.0114 g·mg-1·min-1 and 6.94 mg·g-1, respectively. According to the fitting calculation, the adsorption isotherm could also be described as the Freundlich isotherm model. The removal efficiency could be maintained above 50% after 4 cycles, negating the need for toxic organic solvent extraction, offering a method for bringing the technology one step closer to industrial application and giving CORA promising potential in practical water treatment.
Collapse
Affiliation(s)
- Shuhui Yang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Qingyan Cheng
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Tianjin
Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| | - Liangyan Hu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yunhan Gu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yanji Wang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Tianjin
Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| | - Zhenfa Liu
- Institute
of Energy Sources, Hebei Academy of Science, Shijiazhuang, Hebei Province 050081, China
| |
Collapse
|
7
|
Su Y, Zhao Q, Du J, Liu C, Jiang X, Wei W, Tong X. Pickering emulsion-enhanced Vibrio fischeri assay for ecotoxicity assessment of highly hydrophobic polycyclic aromatic hydrocarbons. CHEMOSPHERE 2023; 313:137470. [PMID: 36493886 DOI: 10.1016/j.chemosphere.2022.137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Accurate ecotoxicity assessment of contaminated soil is critical to public health, and the luminescent bacteria (Vibrio fischeri) method is the most commonly used. Hydrophobic compounds such as polycyclic aromatic hydrocarbons (PAHs) in soil cannot be in contact with luminescent bacteria due to their low water solubility so that the luminescence inhibitory effect cannot be observed. The underestimated biological toxicity makes the test unreliable and en-dangers public health and safety. The commonly adopted improved method of adding cosolvents has limited effect, it was only effective for low-hydrophobicity chemicals and could not be used for ecotoxicity evaluation of high-hydrophobicity chemicals. Therefore, we constructed Pickering emulsions using luminescent bacteria modified with n-dodecanol in which PAHs were dissolved in the oil phase, n-tetradecane. Then the luminescent bacteria could tightly adhere to the oil-water interface and contact PAHs. As a result, their bioluminescence was suppressed to varying degrees depending on the chemical species and concentrations. With no solubility limitation, highly hydrophobic PAHs could even completely inhibit bacterial bioluminescence, hence the toxicity information was accurately displayed and the median effect concentration (EC50) values could be calculated. This Pickering emulsion-based method was successfully applied for the accurate ecotoxicity evaluation of highly hydrophobic PAHs and soil samples contaminated with them, which all previous methods could not achieve. This method overcomes the problem of ecotoxicity evaluation of hydrophobic compounds, and has great potential for practical application, whether it is pure chemicals or various real samples from the ecological environment.
Collapse
Affiliation(s)
- Yuchen Su
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China
| | - Qianghong Zhao
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China
| | - Jiayin Du
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China
| | - Chunlan Liu
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China
| | - Xuemei Jiang
- Bioengineering College, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| | - Weili Wei
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China.
| | - Xiaoyong Tong
- School of Pharmaceutical Sciences, Chongqing University, No. 55, Daxuecheng South Road, Shapingba District, Chongqing, 401331, PR China.
| |
Collapse
|
8
|
Ding N, Jin C, Zhao N, Zhao Y, Guo L, Gao M, She Z, Ji J. Removal effect of enrofloxacin from mariculture sediments by bioelectrochemical system and analysis of microbial community structure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119641. [PMID: 35787425 DOI: 10.1016/j.envpol.2022.119641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Based on the application of sediment microbial fuel cell (SMFC) in the bioremediation of sediment, this study used the sediment microbial fuel cell technology as the leading reactor. Modification of anode carbon felts (CF) by synthesis of PANI/MnO2 composited to improve the electrical performance of the sediment microbial fuel cell. This study investigated the degradation effects, degradation pathways of the specific contaminant enrofloxacin and microbial community structure in sediment microbial fuel cell systems. The results showed that the sediment microbial fuel cell system with modified anode carbon felt (PANI-MnO2/CF) prepared by in-situ chemical polymerization had the best power production performance. The maximum output voltage was 602 mV and the maximum power density was 165.09 mW m-2. The low concentrations of enrofloxacin (12.81 ng g-1) were effectively degraded by the sediment microbial fuel cell system with a removal rate of 59.52%.
Collapse
Affiliation(s)
- Nan Ding
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Nannan Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
9
|
Comparison of Fenton and Ozone Oxidation for Pretreatment of Petrochemical Wastewater: COD Removal and Biodegradability Improvement Mechanism. SEPARATIONS 2022. [DOI: 10.3390/separations9070179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Cost-effective pretreatment of highly concentrated and bio-refractory petrochemical wastewater to improve biodegradability is of significant importance, but remains challenging. This study compared the pretreatment of petrochemical wastewater by two commonly used chemical advanced oxidation technologies (Fenton and ozone oxidation), and the mechanisms of biodegradability improvement of pretreated wastewater were explored. The obtained results showed that in the Fenton oxidation system, the COD removal of petrochemical wastewater was 89.8%, BOD5 decreased from 303.66 mg/L to 155.49 mg/L, and BOD5/COD (B/C) increased from 0.052 to 0.62 after 60 min under the condition of 120 mg/L Fe2+ and 500 mg/L H2O2, with a treatment cost of about 1.78 $/kgCOD. In the ozone oxidation system, the COD removal of petrochemical wastewater was 59.4%, BOD5 increased from 127.86 mg/L to 409.28 mg/L, and B/C increased from 0.052 to 0.41 after 60 min at an ozone flow rate of 80 mL/min with a treatment cost of approximately 1.96 $/kgCOD. The petrochemical wastewater treated by both processes meets biodegradable standards. The GC–MS analysis suggested that some refractory pollutants could be effectively removed by ozone oxidation, but these pollutants could be effectively degraded by hydroxyl radicals (•OH) produced by the Fenton reaction. In summary, compared with ozone oxidation, petrochemical wastewater pretreated with Fenton oxidation had high COD removal efficiency and biodegradability, and the treatment cost of Fenton oxidation was also lower than that of ozone oxidation.
Collapse
|