1
|
Ye J, Xu H, Kong X, Zhang Y, Chen Y, Zhou B, Zhu Y, Cai D, Wang D. Simultaneous removal of tetracycline hydrochloride and hexavalent chromium by heterogeneous Fenton in a photocatalytic fuel cell system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121608. [PMID: 38943751 DOI: 10.1016/j.jenvman.2024.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
In this work, a novel double-chamber system (PFC-Fenton), combined photocatalytic fuel cell (PFC) with Fenton, was constructed for tetracycline hydrochloride (TCH) and hexavalent chromium (Cr(VI)) removal and electricity production. Therein, Zn5(OH)6(CO3)2/Fe2O3/BiVO4/fluorine-doped SnO2 (ZIO/BiVO4/FTO) and carboxylated carbon nanotubes/polypyrrole/graphite felt (CCNTs/Ppy/GF) were served as photoanode and cathode, respectively. Under light irradiation, the removal efficiencies of TCH and Cr(VI) with the addition of H2O2 (2 mL) could reach 93.1% and 80.4%, respectively. Moreover, the first-order kinetic constants (7.37 × 10-3 min-1 of TCH and 3.94 × 10-3 min-1 of Cr(VI)) were 5.26 and 5.57 times as much as the absence of H2O2. Simultaneously, the maximum power density could be obtained 0.022 mW/cm2 at a current density of 0.353 mA/cm2. Therein, the main contribution of TCH degradation was ·OH and holes in anode chamber. The synergistic effect of photoelectrons, generated ·O2-, and H2O2 played a crucial role in the reduction of Cr(VI) in cathode chamber. The high-performance liquid chromatography-mass spectrometry indicated that TCH could be partially mineralized into CO2 and H2O. X-ray photoelectron spectroscope and X-ray absorption near-edge structure spectra showed that Cr(VI) could be reduced to Cr(III). After 5 times of cycling, the removal efficiencies of TCH and Cr(VI) were still greater than 70%, indicating the remarkable stability of the PFC-Fenton system. Overall, this system could remove TCH/Cr(VI) and generate power simultaneously without iron sludge formation, demonstrating a promising method to further develop PFC-Fenton technology.
Collapse
Affiliation(s)
- Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Xianghai Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yong Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuhan Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Benji Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
2
|
Tanos F, Razzouk A, Lesage G, Cretin M, Bechelany M. A Comprehensive Review on Modification of Titanium Dioxide-Based Catalysts in Advanced Oxidation Processes for Water Treatment. CHEMSUSCHEM 2024; 17:e202301139. [PMID: 37987138 DOI: 10.1002/cssc.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
It has become necessary to develop effective strategies to prevent and reduce water pollution as a result of the increase in dangerous pollutants in water reservoirs. Consequently, there is a need to design new catalyst materials to promote the efficiency of advanced oxidation processes (AOPs) in the field of wastewater treatment plant to ensure the mineralization of trace organic contaminants. A notable approach gaining attention involves the coupling of sulfate radicals-based AOPs to photocatalysis or electrocatalysis processes, aiming to achieve the complete removal of refractory contaminants into water and carbon dioxide. Titanium dioxide as metal oxide has received great attention for its catalytic application in water purification. TiO2 catalysts offer a multitude of advantages in AOPs. They are characterized by their high photocatalytic activity under both ultraviolet and visible light, making them environmentally friendly due to the absence of toxic byproducts during oxidation. Their versatility is remarkable, finding utility in various AOPs, from photocatalysis to photo-Fenton processes. TiO2's durability ensures long-lasting catalytic activity, which is crucial for continuous treatment processes, and their cost-effectiveness is particularly advantageous. Furthermore, their chemical stability allows it to withstand varying pH conditions. However, the large band gap energy and low electrical conductivity hinder the catalytic reaction effectiveness. This review aims to examine various approaches to enhance the catalytic performance of titanium dioxide, with the objective of enabling more efficient water purification methods.
Collapse
Affiliation(s)
- Fida Tanos
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Antonio Razzouk
- Laboratoire d'Analyses Chimiques, Faculty of Sciences, LAC-Lebanese University, Jdeidet, 90656, Lebanon
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
- Gulf University for Science and Technology, GUST, 32093, Hawally, Kuwait
| |
Collapse
|
3
|
Al-Nuaim MA, Alwasiti AA, Shnain ZY. The photocatalytic process in the treatment of polluted water. CHEMICAL PAPERS 2023; 77:677-701. [PMID: 36213320 PMCID: PMC9527146 DOI: 10.1007/s11696-022-02468-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
Collapse
Affiliation(s)
- Marwah A. Al-Nuaim
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| | - Asawer A. Alwasiti
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| | - Zainab Y. Shnain
- Chemical Engineering, Department, University of Technology, Baghdad, Iraq
| |
Collapse
|
4
|
Villaverde JJ, Sevilla-Morán B, Alonso-Prados JL, Sandín-España P. A study using QSAR/QSPR models focused on the possible occurrence and risk of alloxydim residues from chlorinated drinking water, according to the EU Regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156000. [PMID: 35597336 DOI: 10.1016/j.scitotenv.2022.156000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Any active substance with phytosanitary capacity intended to be marketed in Europe must pass exhaustive controls to assess its risk before being marketed and used in European agriculture. Since the implementation of Regulation (EC) No 1107/2009, agrochemical companies have been obliged to study the formation of pesticide transformation products (TPs) during the treatment of drinking water containing pesticide residues. However, there is no consensus on how to address this requirement. In this research work, the open literature collection on alloxydim was used to propose potential chlorination paths from alloxydim isomers. Furthermore, several QSAR/QSPR models have been used to fill the of knowledge gap relative to some key parameters in the physico-chemical, environmental and ecotoxicological areas of potential alloxydim TPs from chlorinated water for which little information exists. In this way, it has been possible to estimate the state of aggregation of these TPs (they exist mainly as liquids) as well as their ease of transit between the different phases, to predict their possible behaviour in the three environmental compartments (e.g., thermophysical properties point to a change in their evolution with respect to the parent alloxydim isomers) and to anticipate their potential risk to human and animal health (e.g., all of them cause developmental toxicity). These and other results highlight that the hazards of several TPs, i.e., both chlorinated and nonchlorinated from parent alloxydim or from those obtained after cleavage of the N - O bond and the subsequent reaction with chlorine, should be seriously considered. The obtained results reopen the debate on the implications of the use of QSAR/QSPR models for pesticide risk assessment in the legislative framework.
Collapse
Affiliation(s)
- Juan José Villaverde
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Beatriz Sevilla-Morán
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| | - José Luis Alonso-Prados
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - Pilar Sandín-España
- Unit of Plant Protection Products, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| |
Collapse
|
5
|
Qiao JJ, Wang SN, Li JJ, Chen LY, Wang MM, Yi B, Liu QX, Liu YB, Zhang C, Honess P, Gao CQ. Effectiveness of treatment of bedding and feces of laboratory animal with ozone. PLoS One 2022; 17:e0266223. [PMID: 35385528 PMCID: PMC8985978 DOI: 10.1371/journal.pone.0266223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The incineration and burying of the soiled bedding of laboratory animals, as well as using detergents to treat their feces, is hazardous to the environment. This highlights the need for an alternative, environmentally friendly solution for the treatment of the waste of laboratory animal facilities. This study aims to evaluate the efficacy of ozone disinfection of the soiled bedding and feces of laboratory animals. METHODS Two grams of soiled beddings were randomly sampled from the cages of mice and rats. These samples were mixed in a beaker with 40ml saline. Ozone was piped into the beaker at a concentration of 500mg/h. Samples were taken from the beaker at time 0min, 30min, 45min and 60min after ozone treatment for microbiological culturing in an incubator for 48h. Colony form unit of each plate (CFU/plate) at each time point were counted, the mean CFU/plate at each time point after ozone treatment were compared with that present at time zero. Feces of rabbits and dogs were treated and pathogens were counted the similar way as that of bedding of the mice and rats; samples being taken at 0min, 15min, 30min, 45min and 60min. RESULTS Pathogens were observed in beddings of both mice and rats as well as in feces of rabbits and dogs. Ozone treatment for 30min killed more than 93% of pathogens in the bedding of the two rodent species and 60min of treatment killed over 99% of pathogens. Treatment of rabbit and dog feces for 30min killed over 96% pathogens present, and 60min's treatment killed nearly all the pathogens. Both Gram positive and Gram negative pathogens were sensitive to ozone treatment. CONCLUSION Ozone treatment of bedding and feces is an effective and environment friendly way to deal with the waste of animal facilities, saving energy and potentially enabling their reuse as fertilizer.
Collapse
Affiliation(s)
- Jiao-Jiao Qiao
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Shan-Ni Wang
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Jing-Jing Li
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Li-Yu Chen
- Department of Microbiology, Xiang-Ya School of Medicine, Central South University, Changsha, China
| | - Mei-Mei Wang
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Qing-Xia Liu
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Yun-Bo Liu
- Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Paul Honess
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Chang-Qing Gao
- Department of Clinical Laboratory, Xiang-Ya Hospital, Central South University, Changsha, China
- Center for the Study of Laboratory Animals, Xiang-Ya Hospital, Central South University, Changsha, China
| |
Collapse
|