1
|
Zhou Y, Shen Y, Wang H, Jia Y, Ding J, Fan S, Li D, Zhang A, Zhou H, Xu Q, Li Q. Biochar addition accelerates the humification process by affecting the microbial community during human excreta composting. ENVIRONMENTAL TECHNOLOGY 2024; 45:5332-5345. [PMID: 38100615 DOI: 10.1080/09593330.2023.2291418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/30/2023] [Indexed: 12/17/2023]
Abstract
Biochar addition plays an important role in manure composting, but its driving mechanism on microbial succession and humification process of human excreta composting is still unclear. In the present study, the mechanism of biochar addition was explored by analysing the humification process and microbial succession pattern of human excreta aerobic composting without and with 10% biochar (HF and BHF). Results indicated that BHF improved composting temperature, advanced the thermophilic phase by 1 d, increased the germination index by 49.03%, promoted the growth rate of humic acid content by 17.46%, and raised the compost product with the ratio of humic acid to fulvic acid (HA/FA) by 16.19%. Biochar regulated the diversity of fungi and bacteria, increasing the relative abundance of Planifilum, Meyerozyma and Melanocarpus in the thermophilic phase, and Saccharomonospora, Flavobacterium, Thermomyces and Remersonia in the mature phase, which accelerates the humification. Bacterial communities' succession had an obvious correlation with the total carbon, total nitrogen, and temperature (P < 0.05), while the succession of fungal communities was influenced by the HA/FA and pH (P < 0.05). This study could provide a reference for the improvement of on-site human excreta harmless by extending the thermophilic phase, and facilitating the humification in human excreta compost with biochar addition.
Collapse
Affiliation(s)
- Yawen Zhou
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Yujun Shen
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Huihui Wang
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Yiman Jia
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Jingtao Ding
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Shengyuan Fan
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Danyang Li
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Aiqin Zhang
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Haibin Zhou
- Academy of Agricultural Planning and Engineering, Beijing, People's Republic of China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, People's Republic of China
| | - Qing Xu
- United Nations International Children's Emergency Fund China, Beijing, People's Republic of China
| | - Qian Li
- United Nations International Children's Emergency Fund China, Beijing, People's Republic of China
| |
Collapse
|
2
|
Zhou Y, Awasthi MK, Syed A, Bahkali AH. Engineered biochar combined clay for microplastic biodegradation during pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124372. [PMID: 38880326 DOI: 10.1016/j.envpol.2024.124372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
This study pursued to regulate bacterial community succession pattern and expedited biodegradation of microplastics (MP) during pig manure (PM) composting employing walnut shell biochar (WSB) and montmorillonite (M). The WSB with concentration of 0%, 2.5%, 5%, 7.5%, 10% and 12% along with 10% M participated into PM for 42 days compost to search the optimal solution. The results confirmed the most prosperous bacterial phylum consisted of Firmicutes (3.02%-91.80%), Proteobacteria (2.08%-48.54%), Chloroflexi (0-44.62%) and Bacteroidetes (0.85%-40.93%). The addition of biochar has dramatically arranged bacterial community at different stages of composting. Energy Dispersive Spectrometer (EDS) revealed that carbon element in MPs decreased since the chemical bond fracture, under the intervention of high-temperature composting and WSB, the carbon content of MPs was maximum reduced by 20.25%. Fourier transform infrared spectrum indicated that CC, C-O, C-H and -COOH abundance of MPs in 10% and 12% dose biochar addition sharply reduced, interestingly, explicating WSB and composting made MP biodegradable. This experiment possesses affirmatory practical meaning for elimination of potential hazards by composting.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Zhang D, Zhou H, Ding J, Shen Y, Hong Zhang Y, Cheng Q, Zhang Y, Ma S, Feng Q, Xu P. Potential of novel iron 1,3,5-benzene tricarboxylate loaded on biochar to reduce ammonia and nitrous oxide emissions and its associated biological mechanism during composting. BIORESOURCE TECHNOLOGY 2024; 396:130424. [PMID: 38341046 DOI: 10.1016/j.biortech.2024.130424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
In this study, a novel iron 1,3,5-benzene tricarboxylate loaded on biochar (BC-FeBTC) was developed and applied to kitchen waste composting. The results demonstrated that the emissions of NH3 and N2O were significantly reduced by 57.2% and 37.8%, respectively, compared with those in control group (CK). Microbiological analysis indicated that BC-FeBTC addition altered the diversity and abundance of community structure as well as key functional genes. The nitrification genes of ammonia-oxidizing bacteria were enhanced, thereby promoting nitrification and reducing the emission of NH3. The typical denitrifying bacterium, Pseudomonas, and critical functional genes (nirS, nirK, and nosZ) were significantly inhibited, contributing to reduced N2O emissions. Network analysis further revealed the important influence of BC-FeBTC in nitrogen transformation driven by functional microbes. These findings offer crucial scientific foundation and guidance for the application of novel materials aimed at mitigating nitrogen loss and environmental pollution during composting.
Collapse
Affiliation(s)
- Dongli Zhang
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Haibin Zhou
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Jingtao Ding
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Yujun Shen
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China.
| | - Yue Hong Zhang
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200, China
| | - Qiongyi Cheng
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Yang Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Shuangshuang Ma
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| | - Qikun Feng
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Pengxiang Xu
- Academy of Agricultural Planning and Engineering, Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture, Beijing 100125, China
| |
Collapse
|
4
|
Duan Y, Awasthi MK, Yang J, Tian Y, Li H, Cao S, Syed A, Verma M, Ravindran B. Bacterial community dynamics and co-occurrence network patterns during different stages of biochar-driven composting. BIORESOURCE TECHNOLOGY 2023:129358. [PMID: 37336449 DOI: 10.1016/j.biortech.2023.129358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Bacterial communities were dynamically tracked at four stages of biochar-driven sheep manure pile composting, and the co-occurrence networks with keystone taxa were established. The succession of bacterial community obvious varied during the composting process, Proteobacteria predominant in initial stage (39%) then shifted into Firmicutes in thermophilic (41%) and mesophilic (27%) stages, finally the maturation stage dominant by Bacteroidota (26%). Visualizations of bacterial co-occurrence networks demonstrate more cooperative mutualism and complex interactions in the thermophilic and mesophilic phases. Noticeably, the 7.5 and 10% biochar amended composts shown highest connections (736 and 663 total links) and positive cooperation (97.37 and 97.13% positive link) as well as higher closeness centrality and betweenness centrality of keystone taxa. Overall, appropriate biochar addition alters bacterial community succession and strengthens connection between keystone taxa and other bacteria, with 7.5 and 10% biochar amended composts has intense mutualistic symbiosis among bacterial communities.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jianfeng Yang
- College of Resources Environment Science and Technology, Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Yuan Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Shan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development Department of Chemistry Chandigarh University Gharuan, Mohali, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| |
Collapse
|
5
|
Chen H, Min F, Hu X, Ma D, Huo Z. Biochar assists phosphate solubilizing bacteria to resist combined Pb and Cd stress by promoting acid secretion and extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131176. [PMID: 36948118 DOI: 10.1016/j.jhazmat.2023.131176] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms have difficulty surviving and performing remediation functions in mixed systems with high concentrations of Pb and Cd. Biochar has the potential to assist microorganism remediation as an excellent adsorbent for heavy metals. In this study, pig manure biochar (PMB) was used to assist phosphorus solubilizing bacteria (PSB) to explore the mineralization protection and biofeedback mechanism of biochar on PSB under mixed stress of 1000 mg/L Pb2+ and 500 mg/L Cd2+. The adsorption results showed that the removal of Pb2+ and Cd2+ by PMB+PSB was 148.77% and 72.27% higher than that by PSB. Meanwhile, the non-bioavailable fraction of Cd2+ and acid-soluble fraction of Pb2+ in PMB+PSB were increased by 9% and 3%, respectively. Mineralogical and microbial secretion results confirm that showed that the acidic soluble fraction and non-bioavailable fraction were mostly Pb/Cd-carbonate and Pb/Cd-phosphate. The pore adsorption and precipitation (carbonate) of biochar were able to reduce the exposure of PSB to Pb/Cd and the background stress concentration, thus stimulating the biological positive feedback effect of PSB and forming a microenvironment in the cell periphery. The vesicle detoxification and extracellular polymeric substance protection mechanism of PSB were improved under biochar protection, and the individual size and activity of PSB cells were enhanced. Besides, citric acid release from PSB (28.85% increase) accelerated the dissolution of unstable Cd-carbonate, thereby releasing a large amount of Cd2+ to compete with Pb2+ for PO43-. Thus, the protection of biochar and the positive feedback effect of PSB could reduce the biotoxicity of Cd2+ in the stress system by preferentially forming a stable Cd-phosphate. In addition, the excellent electrical conductivity and organic material adsorption of biochar increased the extracellular electron transport rate of microorganisms, which further accelerated the mineralization and immobilization of Pb2+ and Cd2+, so as to ensure the repair effect of PSB on heavy metals.
Collapse
Affiliation(s)
- Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fangfang Min
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dehua Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No.172 Jiangsu Road, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
6
|
Li J, Lu H, Yang H, Wen X, Huang Y, Li Q. Performances of antibiotic resistance genes profile upon the action of biochar-activated peroxydisulfate in composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117509. [PMID: 36801799 DOI: 10.1016/j.jenvman.2023.117509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In this study, the amendment of biochar-activated peroxydisulfate during composting to remove antibiotic resistance genes (ARGs) by direct (microbial community succession) and indirect methods (physicochemical factors) was analyzed. When implementing indirect methods, the synergistic effect of peroxydisulfate with biochar optimized the physicochemical habitat of compost, maintaining its moisture within a range of 62.95%-65.71%, and a pH of 6.87-7.73, and causing the compost to mature 18 days earlier than the control groups. The direct methods caused the optimized physicochemical habitat to adjust the microbial communities and reduce the abundance of most of the ARG host bacteria (Thermopolyspora, Thermobifida, and Saccharomonospora), thus inhibiting this substance's amplification. Heatmap analysis confirmed the necessary connection between physicochemical factors, microbial communities, and ARGs. Moreover, a mantel test confirmed the direct significant effect of the microbial communities on ARGs and the indirect significant effect of physicochemical factors on ARGs. The results showed that the abundance of more ARGs was down-regulated at the end of composting and regulated by biochar-activated peroxydisulfate, especially for the abundance of AbaF, tet(44), golS, and mryA, which was significantly decreased by 0.87-1.07 fold. These results provide new insights into the removal of ARGs during composting.
Collapse
Affiliation(s)
- Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Qiu W, Kang J, Ding H, Sun R, Yang Z, Ge J. Aerobic composting of chicken manure with amoxicillin: Alpha diversity is closely related to lipid metabolism, and two-component systems mediating their relationship. BIORESOURCE TECHNOLOGY 2022; 360:127543. [PMID: 35777649 DOI: 10.1016/j.biortech.2022.127543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Composting is a technology that can use various functional microorganisms to degrade antibiotics. However, antibiotics will cause a coercion for the growth of most microorganisms. Microorganism can survive different environments, thanks to the development of different adaptive responses. Often, two-component systems sense changes in the environment and trigger a cellular response and adaptation. Therefore, the main purpose of this study was to explore how the two-component system modulates the corresponding metabolic functions to affect alpha diversity during composting. The results show that amoxicillin increases species diversity, reduces species richness. Lipid metabolism is an important metabolic pathway mediating changes in alpha diversity. Two-component system indirectly affects alpha diversity by regulating lipid metabolism. Firmicutes are important microbial communities mediating changes in alpha diversity This work presents an understanding of the impact of environmental information processing on microbial diversity, during composting.
Collapse
Affiliation(s)
- Wei Qiu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hao Ding
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhichao Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|