1
|
Halder S, Wang Z, Roy PK, Sedighi M. Improving the adsorption properties of low surface area hardwood biochar for the removal of Fe + and PO₄ 3- from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60936-60958. [PMID: 39397234 DOI: 10.1007/s11356-024-35249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Biochar produced from wood residues may provide a new method and material for managing the environment, particularly in terms of carbon sequestration and contaminant remediation. Additionally, biochar produced from wood residues is free of chemical fertilizers, likewise in rice straw, wheat straw, corn straw, etc. This study investigated the removal of iron from aqueous solutions by a novel low-cost and eco-friendly biochar made from hardwood trees and modified by adding MgCl2 for effective phosphate removal. Optimal adsorption conditions were determined through studies of adsorption time, pH, and adsorbent dosage. Batch equilibrium isotherm and kinetic experiments and pre/post-adsorption characterizations using FESEM-EDS, XRD, and FTIR suggested that the presence of carboxyl group elements and colloidal and nano-sized MgO (periclase) particles on the biochar surface were the main adsorption sites for aqueous iron and phosphate respectively. In this study, the HW and MgO-HW biochar showed excellent Dubinin-Radushkevich isotherm (D-R) maximum adsorption capacities of 289.45 and 828.82 mg/g for iron and phosphate. The kinetic study for iron and phosphate adsorption was described well by pseudo second-order model and pseudo second-order model respectively. The HW biochar and the prepared MgO-HW biochar exhibited commendable iron adsorption (98.25%) performance at 10 pH units and phosphate (96.22%) at pH 6 respectively. Thus, this research reveals a waste-to-wealth strategy by converting hardwood waste into mineral-biomass biochar with excellent Fe and P adsorption capabilities and environmental adaptability.
Collapse
Affiliation(s)
- Sudipa Halder
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom.
- School of Water Resources Engineering, Jadavpur University, Kolkata, India.
| | - Ziheng Wang
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Pankaj Kumar Roy
- School of Water Resources Engineering, Jadavpur University, Kolkata, India
| | - Majid Sedighi
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Li X, Zhang X, Wang J, Liu Z, Song H, An J. Biochar Organic Fertilizer Combined with Indigenous Microorganisms Enhances the Growth of Landscape Grass Cultivated in a Substrate Mixed with Iron Tailings and Mining Topsoil. PLANTS (BASEL, SWITZERLAND) 2024; 13:3042. [PMID: 39519961 PMCID: PMC11548118 DOI: 10.3390/plants13213042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Iron tailings from the mining process occupy vast land areas and pose a significant ecological risk. In order to reuse iron tailings resources and carry out in situ ecological restoration of a mine, in this study, a medium of mixed iron tailings and mining topsoil (m:m = 3:1) was used to plant landscape grasses, including Lolium perenne L. (L. perenne), Pennisetum alopecuroides (L.) Spreng. (P. alopecuroides), Melilotus officinalis (L.) Lam. (M. officinalis), and Medicago sativa L. (M. sativa). Biochar and chicken manure were used as biochar organic fertilizers and indigenous microorganisms were isolated from the rhizosphere soil of tested grasses. They were applied to enhance landscape grass growth by regulating rhizosphere microbial communities and nutrient conditions. The results showed that the biochar organic fertilizers significantly promoted the growth of the four landscape grasses, notably P. alopecuroides, increasing plant height, root length, root weight, and leaf fresh weight by 169%, 60%, 211%, and 388%, respectively. Additionally, L. perenne exhibited the greatest height increase (10%) following the application of bacterial solutions. Moreover, indigenous bacterial solutions enhanced chlorophyll content and phenylalanine ammonia-lyase (PAL) activity, with P. alopecuroides showing the highest chlorophyll increase of 58% and M. sativa exhibiting a 30.58% rise in PAL activity. The biochar organic fertilizer also significantly elevated soluble protein content in P. alopecuroides and M. sativa by 195% and 152%, respectively. It also effectively enhanced peroxidase (POD) activity in Poaceae grasses by 120% to 160%. After adding indigenous microorganisms, the rhizosphere soil of the landscape grass showed the highest Shannon-Wiener diversity index, reaching 3.561. The rhizosphere soil of M. officinalis had the highest microbial richness, with a value of 39. Additionally, the addition of indigenous microorganisms increased the nitrogen, phosphorus, and potassium content of the four plants by 8-19%, 6-14%, and 8-18%, respectively. This study offers a new approach for managing mining waste and ecological restoration in mining areas.
Collapse
Affiliation(s)
- Xinyue Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (X.L.)
- College Environmental, Shenyang University, Shenyang 110044, China
| | - Xun Zhang
- College Environmental, Shenyang University, Shenyang 110044, China
| | - Jiaoyue Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (X.L.)
| | - Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Hewei Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (X.L.)
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (X.L.)
- National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Shenyang 110142, China
| |
Collapse
|
3
|
Liu C, Hu CY, Xiao S, Deng S, Liu X, Menezes-Blackburn D, Ma LQ. Insoluble-Phytate Improves Plant Growth and Arsenic Accumulation in As-Hyperaccumulator Pteris vittata: Phytase Activity, Nutrient Uptake, and As-Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3858-3868. [PMID: 38356137 DOI: 10.1021/acs.est.3c10546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 μM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 μM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.
Collapse
Affiliation(s)
- Chenjing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Shufen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Songge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Xue Liu
- Institute of Environment Remediation and Human Health, and College of Ecology and Environment, Southwest Forestry University, Kunming 650224 Yunnan, China
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, P. O. Box 34, Al-Khoud, 123 Muscat, Oman
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058 Zhejiang, China
| |
Collapse
|
4
|
Ghosh A, Biswas DR, Bhattacharyya R, Das S, Das TK, Lal K, Saha S, Koli P, Shi R, Alam K, Ren Y. Rice residue promotes mobilisation and plant acquisition of soil phosphorus under wheat (Triticum aestivum)-rice (Oryza sativa) cropping sequence in a semi-arid Inceptisol. Sci Rep 2023; 13:17545. [PMID: 37845251 PMCID: PMC10579330 DOI: 10.1038/s41598-023-44620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023] Open
Abstract
Disposal of significant tonnages of rice straw is expensive, but using it to mobilise phosphorus (P) from inorganically fixed pools in the soil may add value. This study was carried out to determine whether the use of rice straw mixed with phosphorus-solubilizing microbes could solubilize a sizable portion fixed soil P and affect P transformation, silicon (Si) concentration, organic acid concentrations, and enzyme activity to increase plant growth. Depending on the soil temperature, the application of rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes could solubilize 3.4-3.6% of inorganic P, and minimised the hysteresis impact by 6-8%. At plant maturity, application of rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes and 75% of recommended P application raised the activity of dehydrogenase, alkaline phosphatase activity, cellulase, and peroxidase by 77, 65, 87, and 82% in soil, respectively. It also boosted Si concentration in the soil by 58%. Wheat grain yield was 40% and 18% higher under rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes with 75% of recommended P application than under no and 100% P application, respectively. Rice grain yield also increased significantly with the same treatment. Additionally, it increased root volume, length, and P uptake by 2.38, 1.74 and 1.62-times above control for wheat and 1.98, 1.67, and 2.06-times above control for rice, respectively. According to path analysis, P solubilisation by Si and organic acids considerably increased (18-32%) P availability in the rhizosphere. Therefore, cultivators could be advised to use rice straw at 12 Mg ha-1 with phosphorus-solubilizing microbes with 75% P of mineral P fertiliser to save 25% P fertiliser without reducing wheat and rice yield.
Collapse
Affiliation(s)
- Avijit Ghosh
- ICAR -Indian Agricultural Research Institute, New Delhi, 110 012, India.
- ICAR -Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India.
| | | | | | - Shrila Das
- ICAR -Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Tapas K Das
- ICAR -Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Khajanchi Lal
- ICAR -Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Supradip Saha
- ICAR -Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Pushpendra Koli
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- ICAR -Indian Grassland and Fodder Research Institute, Jhansi, 284 003, India
| | - Rongrong Shi
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Khurshid Alam
- ICAR -Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
5
|
Khan A, Ali S, Khan M, Hamayun M, Moon YS. Parthenium hysterophorus's Endophytes: The Second Layer of Defense against Biotic and Abiotic Stresses. Microorganisms 2022; 10:2217. [PMID: 36363809 PMCID: PMC9696505 DOI: 10.3390/microorganisms10112217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2023] Open
Abstract
Parthenium hysterophorus L. is considered an obnoxious weed due to its rapid dispersal, fast multiplications, and agricultural and health hazards. In addition to its physio-molecular and phytotoxic allelochemical usage, this weed most probably uses endophytic flora as an additional line of defense to deal with stressful conditions and tolerate both biotic and abiotic stresses. The aim of this article is to report the diversity of endophytic flora (fungi and bacteria) in P. hysterophorus and their role in the stress mitigation (biotic and abiotic) of other important crops. Various endophytes were reported from P. hysterophorus and their roles in crops evaluated under biotic and abiotic stressed conditions. These endophytes have the potential to alleviate different stresses by improving crops/plants growth, development, biomass, and photosynthetic and other physiological traits. The beneficial role of the endophytes may be attributed to stress-modulating enzymes such as the antioxidants SOD, POD and APX and ACC deaminases. Additionally, the higher production of different classes of bioactive secondary metabolites, i.e., flavonoids, proline, and glutathione may also overcome tissue damage to plants under stressed conditions. Interestingly, a number of medicinally important phytochemicals such as anhydropseudo-phlegmcin-9, 10-quinone-3-amino-8-O methyl ether 'anhydropseudophlegmacin-9, 10-quinone-3-amino-8-Omethyl ether were reported from the endophytic flora of P. hysterophorus. Moreover, various reports revealed that fungal and bacterial endophytes of P. hysterophorus enhance plant growth-promoting attributes and could be added to the consortium of biofertilizers.
Collapse
Affiliation(s)
- Asif Khan
- Laboratory of Phytochemistry, Department of Botany, University of São Paulo, São Paulo 05508-090, Brazil
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 712-749, Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 712-749, Korea
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|