1
|
Cao M, Lv W, Wang F, Ma S, Geng H, Li J, Gao Z, Xu Q, Guo J, Leng W, Chen K, Tan Z, Zhang P, Sun K, Xing B. Foliar Application of Zinc Oxide Nanoparticles Alleviates Phenanthrene and Cadmium-Induced Phytotoxicity in Lettuce: Regulation of Plant-Rhizosphere-Microbial Long Distance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:730-743. [PMID: 39704184 DOI: 10.1021/acs.est.4c07881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Foliar application of beneficial nanoparticles exhibits potential in mitigating combined stresses from heavy metals and polycyclic aromatic hydrocarbons (PAHs) in crops, necessitating a comprehensive understanding of plant-rhizosphere-microbial processes to promote sustainable nanotechnology in agriculture. Herein, we investigated the mitigating mechanisms of foliar application of zinc oxide nanoparticles (nZnO) on lettuce growth under phenanthrene (Phe) and cadmium (Cd) costress. Compared to Phe + Cd treatment, low (L-nZnO) and high (H-nZnO) concentration of nZnO increased fresh biomass (27.2% and 8.42%) and root length (20.4% and 39.6%) and decreased MDA (35.0% and 40.0%) and H2O2 (29.0% and 15.6%) levels. L-nZnO and H-nZnO decreased Cd in roots (26.8% and 41.8%) and enhanced Zn in roots (19.9% and 107%), stems (221% and 2510%), and leaves (233% and 1500%), suggesting the long-distance migration of Zn from leaves to roots and subsequently regulating the metabolic pathways and microbial communities. Metabolomics revealed that nZnO modulated leaf glycerophospholipid metabolism and amino acid pathways and promoted rhizosphere soil carbon and phosphorus metabolism. Additionally, nZnO enriched the plant-growth-promoting, extreme, and stress-resistant bacteria in roots and leaves and heavy-metal-resistant and PAH-degrading bacteria in rhizosphere soil. These findings underscore the promising nanostrategy of nZnO to benefit plant growth in soil cocontaminated with heavy metals and PAHs.
Collapse
Affiliation(s)
- Manman Cao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wenxiao Lv
- Zhongcheng Yuan (Beijing) Environmental Technology Co., Ltd., Beijing 100120, China
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Junhong Li
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Ziqi Gao
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Qing Xu
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Jing Guo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Wenjun Leng
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Zhu Y, Ren X, Xiang M. Enhanced thermal desorption of chlorinated hydrocarbons by nanoscale zero-valent iron: the effect of in situ dechlorination. RSC Adv 2024; 14:14254-14262. [PMID: 38690103 PMCID: PMC11058700 DOI: 10.1039/d4ra01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Thermal desorption provides an efficient solution to remediate soil contaminated with chlorinated organic pollutants. However, enhanced desorption efficiency is desired to facilitate easier and less costly remediation. Hence, nanoscale zero-valent iron (nZVI) was combined with thermal desorption to remove trichloroethene (TCE) and trichlorobenzene (TCB) from soil in a laboratory-scale study. The addition of nZVI greatly improved the desorption efficiency, especially at low temperature with 99.6% of TCE and 98.8% of TCB removed at 300 °C for 2 h. Characterization results revealed that the addition of nZVI loosened the structure of soil, preventing the soil from agglomerating during the thermal treatment. Besides, the analyses of dechlorination intermediates and the variation of Fe species proved the in situ dechlorination effect of nZVI and the redox cycle of Fe was revealed. Moreover, the influences of nZVI dosage and treatment time on thermal treatment were assessed. This study not only offers new perspectives for contaminated soil remediation, but also provides mechanistic insights into the dechlorination effect of nZVI in the thermal desorption.
Collapse
Affiliation(s)
- Yi Zhu
- Shanghai Chengtou Environmental Ecological Remediation Technology Co., Ltd Shanghai 200444 PR China
| | - Xinlei Ren
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 PR China
| | - Minghui Xiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 PR China
| |
Collapse
|
3
|
Liang Y, Xiong J, Yang Q, Wang S. Bagasse cellulose-based S-type Bi 2O 3/Zn 3In 2S 6 photocatalyst for efficient and stable degradation of 2,4-dichlorophenol under visible light. J Colloid Interface Sci 2023; 651:976-986. [PMID: 37586152 DOI: 10.1016/j.jcis.2023.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The environmental and human health hazards posed by 2,4-dichlorophenol (2,4-DCP) call for effective degradation technologies. This research investigates the design and application of a Bi2O3/Zn3In2S6 heterojunction photocatalyst, a 'S scheme', which was constructed via a simple hydrothermal method. The photocatalyst was then embedded in a sugarcane bagasse cellulose carrier (SBC/BO/ZIS), demonstrating excellent 2,4-DCP degradation capacity. The results show that S-type Bi2O3/Zn3In2S6 promotes the separation of photogenerated carriers. The SBC/BO/ZIS complex, in comparison with Bi2O3 and Zn3In2S6 alone, amplifies specific surface area (91.7880 m2/g) and broadens the light absorption range (570 nm) of materials, showing robust photocatalytic performance. The degradation rate of 50 mg/L 2,4-DCP reached an impressive 97% within 120 min. The encapsulation of BO/ZIS in SBC not only increases the efficiency of material recovery and recycling but also allows for continuous degradation of 2,4-DCP in cyclic manners, maintaining a degradation rate between 90% and 97%. XRD characterization shows that the physical properties of the material are not affected. The degradation of 2,4-DCP was dominantly controlled by active species (·OH and ·O2-) identified by electron paramagnetic resonance analysis and free radical trapping experiments. This innovative design significantly enhances sunlight utilization and effectively curbs charge carrier recombination, while also promoting material recovery and utilization. These attributes establish a foundation for a cost-effective and efficient means of treating actual wastewater containing 2,4-DCP.
Collapse
Affiliation(s)
- Yinna Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry Technology and Engineering, Guangxi University, Nanning 530004, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Qifeng Yang
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry Technology and Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Zhang J, Zhou Z, Xiao B, Zhou C, Jiang Z, Liang Y, Sun Z, Xiong J, Chen G, Zhu H, Wang S. Visible-light photocatalytic degradation of water-soluble polyvinyl alcohol in aqueous solution by Cu 2O@TiO 2: Optimization of conditions, mechanisms and toxicity analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118054. [PMID: 37148766 DOI: 10.1016/j.jenvman.2023.118054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Polyvinyl alcohol (PVA), a water-soluble synthetic polymer, is one of the most prevalent non-native polyvinyl alcohols found in the environment. Due to its inherent invisibility, its potential for causing severe environmental pollution is often underestimated. To achieve efficient degradation of PVA in wastewater, a Cu2O@TiO2 composite was synthesized through the modification of titanium dioxide with cuprous oxide, and its photocatalytic degradation of PVA was investigated. The Cu2O@TiO2 composite, supported by titanium dioxide, facilitated photocarrier separation and demonstrated high photocatalytic efficiency. Under alkaline conditions, the composite exhibited a 98% degradation efficiency for PVA solutions and a 58.7% PVA mineralization efficiency. Radical capture experiments and electron paramagnetic resonance (EPR) analyses revealed that superoxide radicals primarily drive the degradation process within the reaction system. Throughout the degradation process, PVA macromolecules are broken down into smaller molecules, including ethanol, and compounds containing aldehyde, ketone, and carboxylic acid functional groups. Although the intermediate products exhibit reduced toxicity compared to PVA, they still pose certain toxic hazards. Consequently, further research is necessary to minimize the environmental impact of these degradation products.
Collapse
Affiliation(s)
- Jiaming Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Zhenqi Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Bing Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Chenxu Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Zhongqin Jiang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Yinna Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhuo Sun
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.
| | - Guoning Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| |
Collapse
|
5
|
Sun S, Wang Y, Xu C, Qiao C, Chen S, Zhao C, Liu Q, Zhang X. Reconstruction of microbiome and functionality accelerated crude oil biodegradation of 2,4-DCP-oil-contaminated soil systems using composite microbial agent B-Cl. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130808. [PMID: 36669400 DOI: 10.1016/j.jhazmat.2023.130808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Biodegradation is one of the safest and most economical methods for the elimination of toxic chlorophenols and crude oil from the environment. In this study, aerobic degradation of the aforementioned compounds by composite microbial agent B-Cl, which consisted of Bacillus B1 and B2 in a 3:2 ratio, was analyzed. The biodegradation mechanism of B-Cl was assessed based on whole genome sequencing, Fourier transform infrared spectroscopy and gas chromatographic analyses. B-Cl was most effective at reducing Cl- concentrations (65.17%) and crude oil biodegradation (59.18%) at 7 d, which was when the content of alkanes ≤ C30 showed the greatest decrease. Furthermore, adding B-Cl solution to soil significantly decreased the 2,4-DCP and oil content to below the detection limit and by 80.68%, respectively, and reconstructed of the soil microbial into a system containing more CPs-degrading (exaA, frmA, L-2-HAD, dehH, ALDH, catABE), aromatic compounds-degrading (pcaGH, catAE, benA-xylX, paaHF) and alkane- and fatty acid-degrading (alkB, atoB, fadANJ) microorganisms. Moreover, the presence of 2,4-DCP was the main hinder of the observed effects. This study demonstrates the importance of adding B-Cl solution to determine the interplay of CPs with microbes and accelerating oil degradation, which can be used for in-situ bioremediation of CPs and oil-contaminated soil.
Collapse
Affiliation(s)
- Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Chenfei Xu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Chenlu Qiao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Shuiquan Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China.
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao 266580, PR China
| |
Collapse
|