1
|
Hashemi E, Norouzi MM, Sadeghi-Kiakhani M. Magnetic biochar as a revolutionizing approach for diverse dye pollutants elimination: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 261:119548. [PMID: 38977156 DOI: 10.1016/j.envres.2024.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The term "biomass" encompasses all substances found in the natural world that were once alive or derived from living organisms or their byproducts. These substances consist of organic molecules containing hydrogen, typically oxygen, frequently nitrogen, and small amounts of heavy, alkaline earth and alkali metals. Magnetic biochar refers to a type of material derived from biomass that has been magnetized typically by adding magnetic components such as magnetic iron oxides to display magnetic properties. These materials are extensively applicable in widespread areas like environmental remediation and catalysis. The magnetic properties of these compounds made them ideal for practical applications through their easy separation from a reaction mixture or environmental sample by applying a magnetic field. With the evolving global strategy focused on protecting the planet and moving towards a circular, cost-effective economy, natural compounds, and biomass have become particularly important in the field of biochemistry. The current research explores a comparative analysis of the versatility and potential of biomass for eliminating dyes as a sustainable, economical, easy, compatible, and biodegradable method. The elimination study focused on the removal of various dyes as pollutants. Various operational parameters which influenced the dye removal process were also discussed. Furthermore, the research explained, in detail, adsorption kinetic models, types of isotherms, and desorption properties of magnetic biochar adsorbents. This comprehensive review offers an advanced framework for the effective use of magnetic biochar, removing dyes from textile wastewater.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran.
| | - Mohammad-Mahdi Norouzi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran
| | - Mousa Sadeghi-Kiakhani
- Institute for Color Science and Technology, Department of Organic Colorants, P.O. Box: 16765-654, Tehran, Iran
| |
Collapse
|
2
|
Wu S, Wu Z, Wang S, Zhang Y, Liao Y, Cai C. Regulation of the co-transport of toluene and dichloromethane by adsorbed phase humic acid under different hydro-chemical conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122562. [PMID: 39305885 DOI: 10.1016/j.jenvman.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The transport behavior of combined organic pollutants in soil and groundwater has attracted significant attention in recent years. Research on the influence of humic acid (HA) on organic pollutant transport behavior mainly focuses on the study of the mobile phase HA, with less research on the adsorbed phase HA, especially regarding its interaction with combined pollutants. To enhance understanding of the regulation of co-transport and retention of combined pollutants by adsorbed phase HA, in this study, tests were conducted to investigate how toluene (TOL) and dichloromethane (DCM) are transported in the presence of adsorbed phase HA at different pH levels and ionic strengths. As the proportions of HA-coated sand increased, so did its adsorption capacity for TOL and DCM, which can be attributed to adsorbed phase HA providing more adsorption sites compared to plain sand, thereby reducing the transport potential of the pollutants. The presence of both TOL and DCM facilitated their mutual transportation due to competitive adsorption controlled by the adsorbed phase HA content in the porous medium. Furthermore, it was observed that pH levels influenced the transport behavior of TOL and DCM when adsorbed phase HA was present since adsorbed phase HA transformation into mobile phase was regulated by pH levels. The transport patterns can be effectively simulated using the chemical nonequilibrium two-site sorption model in HYDRUS-1D, accurately reflecting the retardation coefficients and transport distances based on model parameters. This work sheds new light on the regulatory role of adsorbed phase HA in TOL and DCM transport under diverse hydrochemical conditions, with implications for accurately depicting the behavior of combined pollutants, optimizing the remediation strategies and improving remediation efficiency in contaminated sites.
Collapse
Affiliation(s)
- Shengyu Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongran Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suhang Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youchi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongkai Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Cai
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Khare S, Singhal A, Rallapalli S, Mishra A. Bio-chelate assisted leaching for enhanced heavy metal remediation in municipal solid waste compost. Sci Rep 2024; 14:14238. [PMID: 38902389 PMCID: PMC11190260 DOI: 10.1038/s41598-024-65280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Municipal solid waste compost, the circular economy's closed-loop product often contains excessive amounts of toxic heavy metals, leading to market rejection and disposal as waste material. To address this issue, the study develops a novel approach based on: (i) utilizing plant-based biodegradable chelating agent, L-glutamic acid, N,N-diacetic acid (GLDA) to remediate heavy metals from contaminated MSW compost, (ii) comparative assessment of GLDA removal efficiency at optimal conditions with conventional nonbiodegradable chelator EDTA, and (iii) enhanced pre- and post-leaching to evaluate the mobility, toxicity, and bioavailability of heavy metals. The impact of treatment variables, such as GLDA concentration, pH, and retention time, on the removal of heavy metals was investigated. The process was optimized using response surface methodology to achieve the highest removal effectiveness. The findings indicated that under optimal conditions (GLDA concentration of 150 mM, pH of 2.9, retention time for 120 min), the maximum removal efficiencies were as follows: Cd-90.32%, Cu-81.96%, Pb-91.62%, and Zn-80.34%. This process followed a pseudo-second-order kinetic equation. Following GLDA-assisted leaching, the geochemical fractions were studied and the distribution highlighted Cd, Cu, and Pb's potential remobilization in exchangeable fractions, while Zn displayed integration with the compost matrix. GLDA-assisted leaching and subsequent fractions illustrated transformation and stability. Therefore, this process could be a sustainable alternative for industrial applications (agricultural fertilizers and bioenergy) and social benefits (waste reduction, urban landscaping, and carbon sequestration) as it has controlled environmental footprints. Hence, the proposed remediation strategy, chemically assisted leaching, could be a practical option for extracting heavy metals from MSW compost, thereby boosting circular economy.
Collapse
Affiliation(s)
- Srishti Khare
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Anupam Singhal
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Srinivas Rallapalli
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities, USA.
| | - Anant Mishra
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
4
|
Yang XQ, Yu LQ, Li LF, Lv YK. Enhancing the water-resistance of MOF-199 film through incorporation of microporous organic networks for solid-phase microextraction of BTEX in aqueous environments with improved efficiency. Anal Chim Acta 2024; 1294:342293. [PMID: 38336414 DOI: 10.1016/j.aca.2024.342293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The practical application of moisture sensitive metal organic frameworks (MOFs) in extraction technology faces challenges related to competitive adsorption and water stability. The target analytes cannot be effectively extracted under humid conditions due to the competitive moisture adsorption and/or framework structure collapse of MOFs. In this study, the microporous organic networks (MONs) were synthesized through Sonogashira coupling reaction to use for hydrophobic modification on the surface of MOF-199. RESULTS The MOF-199@MON as coating was deposited on stainless steel wires for solid-phase microextraction (SPME) of benzene series (BTEX) in aqueous environments. Under the optimal extraction conditions, the MOF-199@MON coated fiber for SPME coupled with GC-MS for the determination of BTEX gave the linear range of 0.5-500 μg L-1, the limit of detections (LODs, S/N = 3) of 0.01-0.04 μg L-1, the limit of quantifications (LOQs, S/N = 10) of 0.04-0.12 μg L-1, the enhancement factors of 3567-4878, and the intra-day, inter-day and fiber-to-fiber precisions (relative standard deviations, RSDs) of 1.0-9.8, 1.9-7.9 and 4.5-9.5 %, respectively. The developed method was successfully applied to the analysis of BTEX in water samples with the recoveries of 71.0 %-113 %. SIGNIFICANCE This work reveals the home-made SPME fibers have a long service life (the extraction efficiency of fiber decreased by only 7.26 %-13.14 % after 100 cycles). The potential of MON functionalized MOFs as effective adsorbents for the SPME of pollutants in the water environment.
Collapse
Affiliation(s)
- Xiao-Qin Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Li-Qing Yu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
| | - Lan-Fen Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Yun-Kai Lv
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| |
Collapse
|
5
|
Piccirillo C. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117896. [PMID: 37080100 DOI: 10.1016/j.jenvman.2023.117896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The production of increasing quantities of by-products is a key challenge for modern society; their valorisation - turning them into valuable compounds with technological applications - is the way forward, in line with circular economy principles. In this review, the conversion of bones (by-products of the agro-food industry) into bone char is described. Bone char is obtained with a process of pyrolysis, which converts the organic carbon into an inorganic graphitic one. Differently from standard biochar of plant origin, however, bone char also contains calcium phosphates, the main component of bone (often hydroxyapatite). The combination of calcium phosphate and graphitic carbon makes bone char a unique material, with different possible uses. Here bone chars' applications in environmental remediation, sustainable agriculture, catalysis and electrochemistry are discussed; several aspects are considered, including the bones used to prepare bone char, the preparation conditions, how these affect the properties of the materials (i.e. porosity, surface area) and its functional properties. The advantages and limitations of bone chars in comparison to traditional biochar are discussed, highlighting the directions the research should take for bone chars' performances to improve. Moreover, an analysis on the sustainability of bone chars' preparation and use is also included.
Collapse
Affiliation(s)
- Clara Piccirillo
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
6
|
Multifunctional nano-cellulose aerogel for efficient oil-water separation: Vital roles of magnetic exfoliated bentonite and polyethyleneimine. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Advancements in Clay Materials for Trace Level Determination and Remediation of Phenols from Wastewater: A Review. SEPARATIONS 2023. [DOI: 10.3390/separations10020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The wide spread of phenols and their toxicity in the environment pose a severe threat to the existence and sustainability of living organisms. Rapid detection of these pollutants in wastewaters has attracted the attention of researchers from various fields of environmental science and engineering. Discoveries regarding materials and method developments are deemed necessary for the effective detection and remediation of wastewater. Although various advanced materials such as organic and inorganic materials have been developed, secondary pollution due to material leaching has become a major concern. Therefore, a natural-based material is preferable. Clay is one of the potential natural-based sorbents for the detection and remediation of phenols. It has a high porosity and polarity, good mechanical strength, moisture resistance, chemical and thermal stability, and cation exchange capacity, which will benefit the detection and adsorptive removal of phenols. Several attempts have been made to improve the capabilities of natural clay as sorbent. This manuscript will discuss the potential of clays as sorbents for the remediation of phenols. The activation, modification, and application of clays have been discussed. The achievements, challenges, and concluding remarks were provided.
Collapse
|
8
|
Bazan-Wozniak A, Cielecka-Piontek J, Nosal-Wiercińska A, Pietrzak R. Activation of Waste Materials with Carbon(IV) Oxide as an Effective Method of Obtaining Biochars of Attractive Sorption Properties towards Liquid and Gas Pollutants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8000. [PMID: 36431484 PMCID: PMC9697497 DOI: 10.3390/ma15228000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Biochars that are the subjects of this report have been obtained from the residue of supercritical extraction of common nettle seeds with CO2. The residue was subjected to direct activation with carbon(IV) oxide as an activator. The obtained biochars were found to have a specific surface area inthe range of 888-1024 m2/g and a basic surface. They were used for the adsorption of a liquid organic pollutant (methylene blue) and a gas inorganic pollutant (NO2). As follows from the test results, the biochars were able to adsorb 150-239 mg of the dye. The Langmuir model was found to better describe the adsorption experimental data, while the kinetics of the process was better described by the pseudo-second-order model. From the thermodynamic analysis, it was inferred that the adsorption of methylene blue from a water solution was an endothermic and spontaneous reaction. It was established that elevated temperature of activation and the presence of air stream during adsorption had a positive impact on the adsorption of NO2 by the biochars studied. The greatest sorption capacity of the biochars towards NO2 was 59.1 mg/g.
Collapse
Affiliation(s)
- Aleksandra Bazan-Wozniak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Agnieszka Nosal-Wiercińska
- Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska 3, 20-031 Lublin, Poland
| | - Robert Pietrzak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| |
Collapse
|