1
|
Lamprea-Pineda PA, Carmona FJ, Demeestere K, González-Cortés JJ, Van Langenhove H, Walgraeve C, Lebrero R. Effect of surfactant type and concentration on the gas-liquid mass transfer in biotrickling filters used for air pollution control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121968. [PMID: 39068787 DOI: 10.1016/j.jenvman.2024.121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Volatile organic compounds (VOCs) emitted into the atmosphere negatively affect the environment and human health. Biotrickling filtration, an effective technology for treating VOC-laden waste gases, faces challenges in removing hydrophobic VOCs due to their low water solubility and therefore limited bioavailability to microorganisms. Consequently, the addition of (bio)surfactants has proven to be a promising strategy to enhance the removal of hydrophobic VOCs in biotrickling filters (BTFs). Yet, up to now, no single study has ever performed a mass transfer characterization of a BTF under (bio)surfactants addition. In this study, the effect of (bio)surfactant addition on the gas-liquid mass transfer characteristics of two BTFs was measured by using oxygen (O2) as a model gas. Through an empirical correlation, the mass transfer coefficients (kLa) of two hydrophobic VOCs, toluene and hexane, which are of industrial and environmental significance, were estimated. One BTF was filled with expanded perlite, while the other with a mixture of compost and wood chips (C + WC). Both BTFs were operated under different liquid velocities (UL: 0.95 and 1.53 m h-1). Saponin, a biological surfactant, and Tween 80, a synthetic surfactant, were added to the recirculating liquid at different critical micelle concentrations (CMCs: 0-3 CMC). The higher interfacial and surface area of the perlite BTF compared to the C + WC BTF led to higher kLaO2 values regardless of the operational condition: 308 ± 18-612 ± 19 h-1 versus 42 ± 4-177 ± 24 h-1, respectively. Saponin addition at 0.5 and 1 CMC had positive effects on the perlite BTF, with kLaO2 values two times higher compared to those at 0 CMC. Tween 80 exhibited a neutral or slightly positive effect on the mass transfer of both BTFs under all conditions. Overall, the CMC, along with the physical characteristics of the packing materials and the operational conditions evaluated explained the results obtained. This study provides fundamental data essential to improve the performance and design of BTFs for hydrophobic VOCs abatement.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea-Pineda
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Institute of Sustainable Processes (ISP), University of Valladolid, C/Dr. Margelina, s/n, 47011, Valladolid, Spain
| | - Francisco Javier Carmona
- Institute of Sustainable Processes (ISP), University of Valladolid, C/Dr. Margelina, s/n, 47011, Valladolid, Spain; Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011, Valladolid, Spain
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jose Joaquin González-Cortés
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Chemical Engineering and Food Technology, Vine and Agri-Food Research Institute (IVAGRO), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, 11510, Cádiz, Spain
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Raquel Lebrero
- Institute of Sustainable Processes (ISP), University of Valladolid, C/Dr. Margelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
2
|
Feng J, Song T, Zhang Y, Wang S, Zhang R, Huang L, Zhang C, Liu P. Synchronous removal of gaseous toluene and benzene and degradation process shifts in microbial fuel cell-biotrickling filter system. BIORESOURCE TECHNOLOGY 2024; 400:130650. [PMID: 38570099 DOI: 10.1016/j.biortech.2024.130650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Illustrating the biodegradation processes of multi-component volatile organic compounds (VOCs) will expedite the implication of biotechnology in purifying industrial exhaust. Here, performance shifts of microbial fuel cell and biotrickling filter combined system (MFC-BTF) are investigated for removing single and dual components of toluene and benzene. Synchronous removal of toluene (95 %) and benzene (97 %) are achieved by MFC-BTF accompanied with the output current of 0.41 mA. Elevated content of extracellular polymeric substance facilitates the mass transfer of benzene with the presence of toluene. Strains of Bacteroidota, Proteobacteria and Chloroflexi contribute to the removal of dual components VOCs. Empty bed reaction time and the VOCs concentration are the important factors influencing their dissolution in the system. The biodegradation of toluene and benzene proceeds with 2-hydroxymuconic semialdehyde and o-hydroxybenzoic acid as the main intermediates. These results provide a comprehensive understanding of multi-component VOCs removal by MFC-BTF and guide the system design, optimization, and scale-up.
Collapse
Affiliation(s)
- Jianan Feng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tianqing Song
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuanxin Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shanshan Wang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruiqin Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Long Huang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Changshen Zhang
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Panpan Liu
- School of Ecology & Environment, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
3
|
Lamprea-Pineda PA, Demeestere K, González-Cortés JJ, Boon N, Devlieghere F, Van Langenhove H, Walgraeve C. Addition of (bio)surfactants in the biofiltration of hydrophobic volatile organic compounds in air. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120132. [PMID: 38286067 DOI: 10.1016/j.jenvman.2024.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
The removal of volatile organic compounds (VOCs) in air is of utmost importance to safeguard both environmental quality and human well-being. However, the low aqueous solubility of hydrophobic VOCs results in poor removal in waste gas biofilters (BFs). In this study, we evaluated the addition of (bio)surfactants in three BFs (BF1 and BF2 mixture of compost and wood chips (C + WC), and BF3 filled with expanded perlite) to enhance the removal of cyclohexane and hexane from a polluted gas stream. Experiments were carried out to select two (bio)surfactants (i.e., Tween 80 and saponin) out of five (sodium dodecyl sulfate (SDS), Tween 80, surfactin, rhamnolipid and saponin) from a physical-chemical (i.e., decreasing VOC gas-liquid partitioning) and biological (i.e., the ability of the microbial consortium to grow on the (bio)surfactants) point of view. The results show that adding Tween 80 at 1 critical micelle concentration (CMC) had a slight positive effect on the removal of both VOCs, in BF1 (e.g., 7.0 ± 0.6 g cyclohexane m-3 h-1, 85 ± 2% at 163 s; compared to 6.7 ± 0.4 g cyclohexane m-3 h-1, 76 ± 2% at 163 s and 0 CMC) and BF2 (e.g., 4.3 ± 0.4 g hexane m-3 h-1, 27 ± 2% at 82 s; compared to 3.1 ± 0.7 g hexane m-3 h-1, 16 ± 4% at 82 s and 0 CMC), but a negative effect in BF3 at either 1, 3 and 9 CMC (e.g., 2.4 ± 0.4 g hexane m-3 h-1, 30 ± 4% at 163 s and 1 CMC; compared to 4.6 ± 1.0 g hexane m-3 h-1, 43 ± 8% at 163 s and 0 CMC). In contrast, the performance of all BFs improved with the addition of saponin, particularly at 3 CMC. Notably, in BF3, the elimination capacity (EC) and removal efficiency (RE) doubled for both VOCs (i.e., 9.1 ± 0.6 g cyclohexane m-3 h-1, 49 ± 3%; 4.3 ± 0.3 g hexane m-3 h-1, 25 ± 3%) compared to no biosurfactant addition (i.e., 4.5 ± 0.4 g cyclohexane m-3 h-1, 23 ± 3%; hexane 2.2 ± 0.5 g m-3 h-1, 10 ± 2%) at 82 s. Moreover, the addition of the (bio)surfactants led to a shift in the microbial consortia, with a different response in BF1-BF2 compared to BF3. This study evaluates for the first time the use of saponin in BFs, it demonstrates that cyclohexane and hexane RE can be improved by (bio)surfactant addition, and it provides recommendations for future studies in this field.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea-Pineda
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - José Joaquín González-Cortés
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium; Department of Chemical Engineering and Food Technology, Vine and Agri-Food Research Institute (IVAGRO), University of Cadiz, Pol. Río San Pedro s/n, Puerto Real, 11510, Cadiz Spain.
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Frank Devlieghere
- Research Group Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Herman Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| | - Christophe Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent Belgium.
| |
Collapse
|
4
|
Wang J, Wu Y, Zhang C, Geng A, Sun Z, Yang J, Xi J, Wang L, Yang B. Effect of weak electrical stimulation on m-dichlorobenzene biodegradation in biotrickling filters: Insights from performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2023; 390:129881. [PMID: 37852508 DOI: 10.1016/j.biortech.2023.129881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The microbial electrolysis cell coupled with the biotrickling filters (MEC-BTF) was developed for enhancing the biodegradation of gaseous m-dichlorobenzene (m-DCB) through weak electrical stimulation. The maximum removal efficiency and elimination capacity in MEC-BTF were 1.48 and 1.65 times higher than those in open-circuit BTF (OC-BTF), respectively. Weak electrical stimulation had a positive impact on the characteristics of the biofilm. Additionally, microbial community analysis revealed that weak electrical stimulation increased the abundance of key functional genera (e.g., Rhodanobacter and Bacillus) and genes (e.g., catA/E and E1.3.1.32), thereby accelerating reductive dechlorination and ring-opening of m-DCB. Macrogenomic sequencing further revealed that electron transfer pathway in MEC-BTF might be mediated through extracellular electroactive mediators and cytochromes.
Collapse
Affiliation(s)
- Jiajie Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yu Wu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Caiyun Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Anqi Geng
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiawei Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liping Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Bairen Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
5
|
Liu S, Gao PF, Li S, Fu H, Wang L, Dai Y, Fu M. A review of the recent progress in biotrickling filters: packing materials, gases, micro-organisms, and CFD. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125398-125416. [PMID: 38012483 DOI: 10.1007/s11356-023-31004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Organic pollutants in the air have serious consequences on both human health and the environment. Among the various methods for removing organic pollution gas, biotrickling filters (BTFs) are becoming more and more popular due to their cost-effective advantages. BTF can effectively degrade organic pollutants without producing secondary pollutants. In the current research on the removal of organic pollutants by BTF, improving the performance of BTF has always been a research hotspot. Researchers have conducted studies from different aspects to improve the removal performance of BTF for organic pollutants. Including research on the performance of BTF using different packing materials, research on the removal of various mixed pollutant gases by BTF, research on microbial communities in BTF, and other studies that can improve the performance of BTF. Moreover, computational fluid dynamics (CFD) was introduced to study the microscopic process of BTF removal of organic pollutants. CFD is a simulation tool widely used in aerospace, automotive, and industrial production. In the study of BTF removal of organic pollutants, CFD can simulate the fluid movement, mass transfer process, and biodegradation process in BTF in a visual way. This review will summarize the development of BTFs from four aspects: packing materials, mixed gases, micro-organisms, and CFD, in order to provide a reference and direction for the future optimization of BTFs.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Pan-Feng Gao
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China.
| | - Shubiao Li
- Xiamen Lian Chuang Dar Technology Co., Ltd., Xiamen, 361000, China
| | - Haiyan Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Liyong Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yuan Dai
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Muxing Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|