1
|
Ibebunjo K, El Ouardi Y, Bediako JK, Iurchenkova A, Repo E. Selective recovery of copper from copper tailings and wastewater using chelating resins with bis-picolylamine functional groups. Heliyon 2024; 10:e27766. [PMID: 38515676 PMCID: PMC10955294 DOI: 10.1016/j.heliyon.2024.e27766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Industrial and mining wastewater, along with copper tailings, are typically highly acidic and contain copper and other heavy metals, which may contaminate and damage the environment. Copper (Cu) is, however, a valuable metal, making its removal and recovery from such wastewater and tailings environmentally and economically advantageous. Chelating ion exchange resins featuring bis-picolylamine functional groups are especially suitable for application requiring selective recovery of Cu(II) from highly acidic media. In this study, and for the first time, the kinetics, binding capacity and selectivity of Lewatit MDS TP 220 chelating resin towards Cu(II) are reported. The resin was characterized by Zeta potential, scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Factors including pH, initial concentration, contact time, temperature, and selectivity were investigated to assess the adsorption performance of the chelating resin. The adsorption kinetics tests revealed fast adsorption within the first 5-30 min and fitted the pseudo-second-order model, signifying chemisorption process. The adsorption isotherm followed the Langmuir model, implying monolayer adsorption process. The maximum adsorption capacity (qm) for Cu(II) determined by the Langmuir model was 103.9 mg/g. The adsorption thermodynamics showed an endothermic and spontaneous adsorption. FTIR and XPS studies suggested coordination or chelation as the possible adsorption mechanism. Lewatit MDS TP 220 exhibited excellent Cu(II) adsorption, desorption with 2 M ammonium hydroxide (NH4OH), and selectivity in multi-metal ions solution. Additionally, the resin demonstrated excellent reusability after five regeneration steps. This chelating resin is a potential adsorbent for effective and recurrent recovery of Cu(II) from copper tailings and wastewater, thereby contributing to environmental remediation.
Collapse
Affiliation(s)
- Kosisochi Ibebunjo
- School of Engineering Science, Department of Separation Science, LUT University, FI-53850, Lappeenranta, Finland
| | - Youssef El Ouardi
- School of Engineering Science, Department of Separation Science, LUT University, FI-53850, Lappeenranta, Finland
| | - John Kwame Bediako
- School of Engineering Science, Department of Separation Science, LUT University, FI-53850, Lappeenranta, Finland
| | - Anna Iurchenkova
- Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Nanotechnology and Functional Materials, Sweden
| | - Eveliina Repo
- School of Engineering Science, Department of Separation Science, LUT University, FI-53850, Lappeenranta, Finland
| |
Collapse
|
2
|
Pan C, Sun Y, Dong Y, Hou H, Kai MF, Lan J. Efficient carbamazepine degradation by modified copper tailings and PMS system: Performance evaluation and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133198. [PMID: 38086306 DOI: 10.1016/j.jhazmat.2023.133198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 02/08/2024]
Abstract
It is a green and sustainable path to establish cheap solid waste-based catalyst to establish peroxymonosulfate (PMS) catalytic system for the degradation of carbamazepine (CBZ) in water. In this study, durable copper tailing waste residue-based catalyst (CSWR) was prepared, and efficient CSWR/PMS system was constructed for catalytic degradation of CBZ for first time. The morphology and structure of CSWR changed from clumps to porous and loose amorphous by alkali leaching and medium temperature calcination. The reconstructed surface of the CSWR exposes more active sites promotes the catalytic reaction and increases the degradation rate of CBZ by more than 39.8 times. And the CSWR/PMS achieved a CBZ removal of nearly 99.99 % in 20 min. In particular, perovskite-type iron-calcium compounds were formed, which stimulated the production of more HO• and SO4•- in the system. DFT calculation shows that CSWR has stronger adsorption energy and electron transfer ability to PMS molecules, which improved the degradation efficiency of the system. In general, this study proposed a means of high-value waste utilization, which provided a new idea for the preparation of solid waste based environmental functional materials and is expected to be widely used in practical wastewater treatment.
Collapse
Affiliation(s)
- Cong Pan
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Yan Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yiqie Dong
- School of Civil Engineering and Architecture, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haobo Hou
- School of Resource and Environmental Sciences, Wuhan University, 430072, China
| | - Ming-Feng Kai
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jirong Lan
- School of Resource and Environmental Sciences, Wuhan University, 430072, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Zhang S, Cao J, Yang P, Xie Y, Wang H, Mao Y, Ning K, Zhang Q. Adsorption and aggregation of Cu 2+ on carboxymethylated sugarcane bagasse: Adsorption behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133297. [PMID: 38141295 DOI: 10.1016/j.jhazmat.2023.133297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Abundant biomass resources provide us with sufficient material basis, while a large amount of bio-waste is also produced and the high-value utilization of bio-waste is still highly desirable. Herein, we reported a facile one-pot fabrication approach towards efficient utilization of sugarcane bagasse via carboxymethylation to adsorb and recycle Cu2+ ions. The modified sugarcane bagasse possessed outstanding adsorption efficiency, with a maximum capacity of 263.7 mg g-1, owing to the functional groups such as carboxyl and hydroxyl groups, as well as aromatic structure. It was noted that the carboxymethylated sugarcane bagasse (MSB40) swelled rapidly when suffering Cu2+ ions solution, and more adsorption sites were available since the physical diffusion barrier was removed, thereby enhancing the absorption capacity. Interestingly, Cu2+ ions could induce the aggregation of MSB40 due to the Cu2+ ions compress colloid double layer, neutralizes surface charges, which benefited the following separation process. Ultimately, copper oxide was recovered and the purity reached 97.9%. Additionally, in the presence of both Ca2+ and Mg2+ ions, MSB40 exhibited excellent selectivity for the adsorption of Cu2+ ions. This strategy offers a facile and novel clue for the high-value utilization of bio-waste and the recovery of copper for biomaterial and environmental applications.
Collapse
Affiliation(s)
- Shiping Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Peng Yang
- Department of Health Products Technical Research and Development Center, Yunnan Baiyao Group Co. Ltd, Kunming 650500, PR China
| | - Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Huiming Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yufeng Mao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Kegong Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Health Products Technical Research and Development Center, Yunnan Baiyao Group Co. Ltd, Kunming 650500, PR China.
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
4
|
Yu F, Cheng X, Xu J, Zhang Q. A photothermal MoS 2 decorated biomass carbon-based aerogel with a directionally aligned porous structure for mitigating heavy metal stress under seawater acidification. RSC Adv 2024; 14:3085-3095. [PMID: 38239451 PMCID: PMC10795610 DOI: 10.1039/d3ra07358k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Marine animals and human are threatened by seawater acidification and metal contamination. Especially, the toxicity of copper (Cu) is expected to be boosted with seawater acidification. However, studies on the removal of Cu under seawater acidification are limited for practical applications, owing to obstacles such as instability, secondary contamination, and low adsorption efficiency. In this work, coconut shells were utilized for the synthesis of biomass carbon, which was then decorated with MoS2. A novel porous MoS2/carbon-based aerogel (MCA) with the synergistic effect of photothermal conversion and adsorption was constructed via directional freeze-drying technology. The adsorption properties of MCA were a precise match with Freundlich isotherm and pseudo-second-order kinetic models with a high correlation coefficient (R2) of more than 0.995. Under solar illumination, the surface temperature of MCA reached up to 36.3 °C and the adsorption capacity of MCA increased to 833.8 mg g-1, indicating that the remarkable thermal properties of MCA contributed to achieving high adsorption capacity. The adsorption mechanisms of MCA involved in the removal of Cu(ii) ions were dominated by chemisorption rather than surface physical adsorption. Owing to its outstanding photothermal conversion performance and directionally aligned porous structure, MCA was able to remove Cu(ii) species from seawater, and the adsorption ability of MCA reached 247.1 mg g-1 after ten adsorption cycles. MCA exhibited excellent stability to resist the complex natural environment and was easy to reuse. Overall, MCA with a series of merits, including high adsorption efficiency, excellent photothermal conversion property, and outstanding cycling stability, was confirmed to contribute to addressing heavy metal stress under seawater acidification.
Collapse
Affiliation(s)
- Fang Yu
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 P. R. China
| | - Xiangyu Cheng
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 P. R. China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University Lianyungang 222005 China
| | - Qinfang Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology Yancheng 224051 P. R. China
| |
Collapse
|
5
|
Zhao D, Fu C, Lin S, Xu Y, He H, Liu S, Shi X. Lead-imprinted polyvinylidene fluoride membrane for selective removal of lead from contaminated water: material fabrication, filtration application, and mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94195-94204. [PMID: 37526830 DOI: 10.1007/s11356-023-28569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023]
Abstract
The drinking water has become contaminated with lead in many countries across the world. In this study, a novel lead-imprinted polyvinylidene fluoride (PVDF) membrane was successfully fabricated for selective decontamination of lead from water. First of all, the membrane fabrication process was explored and optimized. The physical and chemical properties were then studied for a better understanding of the features of the membrane. The performance of lead removal by the adsorptive membrane was evaluated by systematic batch adsorption experiments, including pH effect, kinetics, isotherm, selectivity, and regeneration studies. The results indicated that the adsorptive membrane showed a high adsorption capacity of 40.59 mg Pb/g at the optimal pH of 5.5, fast kinetics of 2 h, high selectivity towards lead, and outstanding regeneration performance. The Langmuir equation fitted the isotherm better than the Freundlich equation, while the pseudo-second-order model and pore diffusion model well described the kinetics. The adsorptive membrane showed high selectivity towards lead in the lead/zinc binary solution. In the continuous filtration study, a small piece of adsorptive membrane could treat 3.75 L of lead solution. The XPS studies revealed that the lead uptake was mainly due to the complex reaction between lead and carboxyl and hydroxyl in the membrane.
Collapse
Affiliation(s)
- Dandan Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Chen Fu
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Sudan Lin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Yongzhi Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Haoran He
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Siyuan Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, China.
| |
Collapse
|
6
|
Li X, Xiao Q, Shao Q, Li X, Kong J, Liu L, Zhao Z, Li R. Adsorption of Cd (II) by a novel living and non-living Cupriavidus necator GX_5: optimization, equilibrium and kinetic studies. BMC Chem 2023; 17:54. [PMID: 37316907 DOI: 10.1186/s13065-023-00977-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Biosorbents have been extensively studied for heavy metal adsorption due to their advantages of low cost and high efficiency. In the study, the living and non-living biomass of Cupriavidus necator GX_5 previously isolated were evaluated for their adsorption capacity and/or removal efficiency for Cd (II) through batch experiments, SEM and FT-IR investigations. The maximum removal efficiency rates for the live and dead biomass were 60.51% and 78.53%, respectively, at an optimum pH of 6, a dosage of 1 g/L and an initial Cd (II) concentration of 5 mg/L. The pseudo-second-order kinetic model was more suitable for fitting the experimental data, indicating that the rate-limiting step might be chemisorption. The Freundlich isotherm model fit better than the Langmuir isotherm model, implying that the adsorption process of both biosorbents was heterogeneous. FT-IR observation reflected that various functional groups were involved in Cd (II) adsorption: -OH, -NH, C=O, C-O and C-C groups for the living biomass and -OH, -NH, C-H, C = O, C-N and N-H groups for the dead biomass. Our results imply that non-living biosorbents have a higher capacity and stronger strength for absorbing Cd (II) than living biomass. Therefore, we suggest that dead GX_5 is a promising adsorbent and can be used in Cd (II)-contaminated environments.
Collapse
Affiliation(s)
- Xingjie Li
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China.
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, China.
- Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun, 336000, China.
| | - Qiusheng Xiao
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, China
- Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun, 336000, China
| | - Qin Shao
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
| | - Xiaopeng Li
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, China
| | - Jiejie Kong
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
| | - Liyan Liu
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
| | - Zhigang Zhao
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun, 336000, China
| | - Rungen Li
- College of Life Science and Environmental Resources, Yichun University, Yichun, 336000, China
- Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun, 336000, China
| |
Collapse
|
7
|
Jin G, Gu P, Qin L, Li K, Guan Y, Su H. Preparation of manganese-oxides-coated magnetic microcrystalline cellulose via KMnO4 modification: Improving the counts of the acid groups and adsorption efficiency for Pb(II). Int J Biol Macromol 2023; 239:124277. [PMID: 37011747 DOI: 10.1016/j.ijbiomac.2023.124277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Herein, the manganese-oxides-coated magnetic microcrystalline cellulose (MnOx@Fe3O4@MCC) was prepared by coprecipitation and subsequently modified with KMnO4 solution at room temperature, which was in turn applied for the removal of Pb(II) from wastewater. The adsorption properties of Pb(II) on MnOx@Fe3O4@MCC were investigated. The kinetics and isothermal data of Pb(II) were described well by the Pseudo-second-order model and the Langmuir isotherm model, respectively. At pH = 5, 318 K, the Langmuir maximum Pb(II) adsorption capacity of MnOx@Fe3O4@MCC was 446.43 mg/g, which is higher than many documented bio-based adsorbents. The results of Fourier transform infra-red and X-ray photoelectron spectroscopy indicated that the adsorption mechanisms for Pb(II) mainly involved surface complexation, ion exchange, electrostatic interaction and precipitation. Interestingly, the increased amount of carboxyl group on the surface of microcrystalline cellulose modified by KMnO4 was one of the important reasons for the high Pb(II) adsorption performance of MnOx@Fe3O4@MCC. Furthermore, MnOx@Fe3O4@MCC exhibited excellent activity (70.6 %) after five consecutive regeneration cycles, indicating its high stability and reusability. Endorsing to the cost-effectiveness, environmentally friendliness, and reusable nature, MnOx@Fe3O4@MCC can be counted as a great alternative contender for the remediation of Pb(II) from industrial wastewater.
Collapse
|
8
|
Qi M, Wu Y, Zhang S, Li G, An T. Pollution Profiles, Source Identification and Health Risk Assessment of Heavy Metals in Soil near a Non-Ferrous Metal Smelting Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1004. [PMID: 36673760 PMCID: PMC9858899 DOI: 10.3390/ijerph20021004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution related to non-ferrous metal smelting may pose a significant threat to human health. This study analyzed 58 surface soils collected from a representative non-ferrous metal smelting area to screen potentially hazardous heavy metals and evaluate their health risk in the studied area. The findings demonstrated that human activity had contributed to the pollution degrees of Cu, Cd, As, Zn, and Pb in the surrounding area of a non-ferrous metal smelting plant (NMSP). Cu, Cd, As, Zn, Pb, Ni, and Co pollution within the NMSP was serious. Combining the spatial distribution and Spearman correlations with principal component analysis (PCA), the primary sources of Cd, As, Pb, and Zn in surrounding areas were related to non-ferrous metal smelting and transportation activities. High non-cancer (THI = 4.76) and cancer risks (TCR = 2.99 × 10-4) were found for adults in the NMSP. Moreover, heavy metals in the surrounding areas posed a potential cancer risk to children (TCR = 3.62 × 10-6) and adults (TCR = 1.27 × 10-5). The significant contributions of As, Pb, and Cd to health risks requires special attention. The construction of a heavy metal pollution management system will benefit from the current study for the non-ferrous metal smelting industry.
Collapse
Affiliation(s)
- Mengdie Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|