1
|
Lu X, Wang Y, Liu Y, Xue X, Fu C, Xiong L, Peng L, Yang S, Ma R. Electromagnetic field coupled vertical flow constructed wetlands for rural sewage treatment: Performance, microbial community characteristics and metabolic pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123596. [PMID: 39662442 DOI: 10.1016/j.jenvman.2024.123596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Rural sewage management has been a long and difficult task. To overcome this problem, there is an urgent need for efficient, low-maintenance, low-consumption treatment technologies. In this study, an electromagnetic field coupled vertical flow constructed wetland (EMC-VFCW) and a vertical flow constructed wetland (VFCW) were constructed, and the removal performance, microbial changes, and metabolic pathways of both were investigated. The results demonstrated that the EMC-VFCW system achieved removal rates of 88.68% for COD, 92.89% for TP, 83.39% for NH4+-N, and 94.60% for NO3--N. SEM analysis revealed that the lysis of the filler surface in the EMC-VFCW system was rougher and had an increased number of active sites, which provided conditions for microbial attachment. High-throughput sequencing revealed that the EMC-VFCW system was enriched with a greater abundance of microorganisms, including Proteobacteria, Betaproteobacteria, and Acinetobacter, indicating that the presence of the electromagnetic field increased the amount of bacteria associated with phosphate removal and denitrogenation. A KEGG analysis suggested that during decontamination, the electromagnetic field might have released signal molecules that promoted energy metabolism, stimulated membrane transport, and accelerated nitrogen metabolism in the EMC-VFCW system. Additionally, the presence of the electromagnetic field altered nitrogen metabolism pathways and increased the relative abundance of denitrification-related genes (nirB, nirS, nirK). Moreover, the electromagnetic field improved the relationships among microorganisms, nitrogen metabolism functional genes, and pollutant removal in the EMC-VFCW system. Therefore, this study offers valuable insights into the performance and mechanisms of rural sewage disposal.
Collapse
Affiliation(s)
- Xiuxiu Lu
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China; Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous & Rural Areas of Yunnan Province, Kunming, Yunnan, 650224, PR China
| | - Yan Wang
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China; Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous & Rural Areas of Yunnan Province, Kunming, Yunnan, 650224, PR China.
| | - Yungen Liu
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China; Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous & Rural Areas of Yunnan Province, Kunming, Yunnan, 650224, PR China
| | - Xin Xue
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Chuandong Fu
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Liechao Xiong
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Liping Peng
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Silin Yang
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| | - Rong Ma
- College of Soil and Water Conservation, Southwest Forestry University, Kunming, Yunnan, 650224, PR China
| |
Collapse
|
2
|
Ouyang B, Zhang Z, Chen F, Li F, Fu ML, Lan H, Yuan B. Energy production and denitrogenation performance by sludge biochar based constructed wetlands-microbial fuel cells system: Overcoming carbon constraints in water. WATER RESEARCH 2024; 273:123024. [PMID: 39733529 DOI: 10.1016/j.watres.2024.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
As freshwater demand grows globally, using reclaimed water in natural water bodies has become essential. Constructed wetlands (CWs) are widely used for advanced wastewater treatment due to their environmental benefits. However, low carbon/nitrogen (C/N) ratios in wastewater limit nitrogen removal, often leading to eutrophication. This study explores the use of sewage sludge biochar (SB) and activated carbon (AC) as electrodes in microbial fuel cell-constructed wetlands (MFC-CW) to enhance nitrogen removal and energy generation. Results indicated that the sludge biochar closed-circuit CW (MSBS-CW) achieved considerable total nitrogen removal (95.85 %) and maximum power density (9.05 mW/m²). Furthermore, high-throughput sequencing and functional gene analysis revealed substantial shifts in the microbial community within MSBS-CW, particularly in the electroactive bacteria (Geobacter), autotrophic denitrifying bacterium (Hydrogenophaga, Thiobacillus) and anaerobic ammonium oxidation bacteria (Candidatus_Brocadia). Electrochemical and material characterization showed that SB enhanced the cathode's electrochemical performance and the anode's biocompatibility, thereby improving denitrification and energy generation. This study demonstrates that sludge biochar is an effective low-cost electrode material for MFC-CW systems, offering a sustainable solution for nitrogen removal and energy production under carbon-constrained conditions.
Collapse
Affiliation(s)
- Boda Ouyang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Zhiyong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fuzhi Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Fei Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| |
Collapse
|
3
|
Xiong L, Ma R, Yin F, Fu C, Peng L, Liu Y, Lu X, Li C. Simulation and optimisation of magnetic and experimental study of magnetic field coupling constructed wetland. ENVIRONMENTAL TECHNOLOGY 2024; 45:5083-5103. [PMID: 37955936 DOI: 10.1080/09593330.2023.2283801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
This study developed a novel constructed wetland (CW) coupled with a magnetic field for treating domestic wastewater, and the magnetic field distribution was solved and optimised by the finite element method. Herein, we investigated the effects of optimising magnetic field optimisation and studied its impact on CW treatment performance and the responses of a microbial community. The optimisation results showed that the average magnetic field strength of the CW unit increases from 3 to 8 mT, and the proportion of areas with magnetic field strength greater than 5 mT also increases from 30% to 74%. The water quality analysis results showed that the removal of chemical oxygen demand (COD) and NH4+-N (p < 0.01) was significantly increased by the magnetic field (average 3 mT), increasing by 12.2% and 8.49%, respectively. Moreover, the removal of COD and NH4+-N (p < 0.01) was more significantly increased by M-VFCW(O) (average 8 mT), increasing by 15.58% and 49.1%, respectively. The magnetic field application shifted significantly the abundance of dominant bacteria in CWs. Relative abundance of dominant bacteria such as Proteobacteria (63.3%), Firmicutes (4.72%) and Actinobacteria (2.11%) that played an important role in organics removal and nitrification and denitrification-related bacteria such as Nitrospirae (1.48%) and Planctomycetes (9.58%) significantly promoted in M-VFCW(O). These results suggest that introducing a magnetic field into CWs may improve organics and nitrogen removal via the biological process, and the optimisation of the magnetic field was significant in enhancing the performance of VFCWs.
Collapse
Affiliation(s)
- Liechao Xiong
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Rong Ma
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Fajin Yin
- School of Mechanical Engineering and Transportation, Southwest Forestry University, Kunming, People's Republic of China
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Chuandong Fu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Liping Peng
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Yungen Liu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Xiuxiu Lu
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| | - Chengrong Li
- Key Laboratory of Ecological Environment Evolution and Pollution Control in Mountainous and Rural Areas of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
4
|
Zhang M, Fu G, Shi W, Feng X, Lens PNL, Zhang B. Microbial response to the chronic toxicity effect of graphene and graphene oxide nanomaterials within aerobic granular sludge systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135350. [PMID: 39079301 DOI: 10.1016/j.jhazmat.2024.135350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Nanomaterials present in wastewater can pose a significant threat to aerobic granular sludge (AGS) systems. Herein, we found that compared to graphene nanomaterials (G-NMs), the long-term presence (95 days) of graphene oxide nanomaterials (GO-NMs) resulted in an increased proliferation of filamentous bacteria, poorer sedimentation performance (SVI30 of 74.1 mL/g) and smaller average particle size (1224.4 µm) of the AGS. In particular, the GO-NMs posed a more significant inhibitory effect to the total nitrogen removal efficiency of AGS (decreased by 14.3 %), especially for the denitrification process. The substantial accumulation of GO-NMs within the sludge matrix resulted in a higher level of reactive oxygen species in AGS compared to G-NMs, thereby inducing lactate dehydrogenase release, and enhancing superoxide oxidase and catalase activities. Such excessive oxidative stress could potentially result in a significant reduction in the activity of nitrogen metabolism enzymes (e.g., nitrate reductase and nitrite reductase) and the expression of key functional genes (e.g., nirS and nirK). Altogether, compared to G-NMs, prolonged exposure to GO-NMs had a more significant chronic toxicity effect on AGS systems. These findings implied that the presence of G-NMs and GO-NMs is a hidden danger to biological nitrogen removal and should receive more attention.
Collapse
Affiliation(s)
- Ming Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Guokai Fu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xueli Feng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601 DA Delft, the Netherlands
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Cun D, Wang H, Jiang M, Lin R, Deng S, Chang J, Zhao Y, Duan C. Effective remediation of agricultural drainage at three influent strengths by bioaugmented constructed wetlands filled with mixture of iron‑carbon and organic solid substrates: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174615. [PMID: 38997019 DOI: 10.1016/j.scitotenv.2024.174615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Agricultural drainage containing a large quantity of nutrients can cause quality deterioration and algal blooming of receiving water bodies, thus needs to be effectively remediated. In this study, iron‑carbon (FeC) composite-filled constructed wetlands (Fe-C-CWs) were employed to treat farmland drainage at three pollution levels, and organic solid substrates (walnut shells) and phosphate-accumulating denitrifying bacteria (Pseudomonas sp. DWP1) were supplemented to enhance the treatment performance. The results showed that the Fe-C-CWs exhibited notably superior removal efficiency for total nitrogen (TN, 52.0-58.2 %), total phosphorus (TP, 67.8-70.2 %) and chemical oxygen demand (COD, 56.7-70.4 %) than the control systems filled solely with gravel (28.5-32.5 % for TN, 33.2-40.5 % for TP and 30.2-55.0 % for COD) at all influent strengths, through driving autotrophic denitrification, Fe-based dephosphorization, and organic degradation processes. The addition of organic substrates and functional bacteria markedly enhanced pollutant removal in the Fe-C-CWs. Furthermore, use of FeC and organic substrates and denitrifier inoculation decreased CO2 and CH4 emissions from the CWs, and reduced global warming potential of the CWs at low influent strength. Pollutant removal efficiencies in the CWs were only marginally impacted by the increasing influent loads except for NO3--N, and pollutant removal mass was largely increased with the increase of influent strengths. The microbial community in the FeC composite-filled CWs exhibited distinct distribution patterns compared to the gravel-filled CWs regardless of the influent strengths, with obviously higher proportions of dominant genera Trichococcus, Geobacter and Ferritrophicum. Keystone taxa associated with pollutant removal in the Fe-C-filled CWs were identified to be Pseudomonas, Geobacter, Ferritrophicum, Denitratisoma and Sediminibacterium. The developed augmented Fe-C-filled CWs show great promises for remediating agricultural drainage with varied pollutant loads.
Collapse
Affiliation(s)
- Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China
| | - Haoyu Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Ming Jiang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Nanjing Academy of Water Sciences Ruidi Technology Group Co., Ltd, Nanjing 210009, China
| | - Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shengjiong Deng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China.
| | - Yonggui Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming 650091, China.
| |
Collapse
|
6
|
Zeng M, Liu Y, Li Z, Song G, Liu X, Xia X, Li Z. Maximizing pollutant removal and greenhouse gas emission reduction in vertical flow constructed wetlands: an orthogonal experimental approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44730-44743. [PMID: 38954343 DOI: 10.1007/s11356-024-34086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Owing to the impact of the effluent C/N from the secondary structures of urban domestic wastewater treatment plants, the denitrification efficiency in constructed wetlands (CWs) is not satisfactory, limiting their widespread application in the deep treatment of urban domestic wastewater. To address this issue, we constructed enhanced CWs and conducted orthogonal experiments to investigate the effects of different factors (C/N, fillers, and plants) on the removal of conventional pollutants and the reduction of greenhouse gas (GHG) emission. The experimental results indicated that a C/N of 8, manganese sand, and calamus achieved the best denitrification efficiencies with removal efficiencies of 85.7%, 95.9%, and 88.6% for TN, NH4+-N, and COD, respectively. In terms of GHG emission reduction, this combination resulted in the lowest global warming potential (176.8 mg/m2·day), with N2O and CH4 emissions of 0.53 and 1.25 mg/m2·day, respectively. Characterization of the fillers revealed the formation of small spherical clusters of phosphates on the surfaces of manganese sand and pyrite and iron oxide crystals on the surface of pyrite. Additionally, the surface Mn (II) content of the manganese sand increased by 8.8%, and the Fe (III)/Fe (II) and SO42-/S2- on pyrite increased by 2.05 and 0.26, respectively, compared to pre-experiment levels. High-throughput sequencing indicated the presence of abundant autotrophic denitrifying bacteria (Sulfuriferula, Sulfuritalea, and Thiobacillus) in the CWs, which explains denitrification performance of the enhanced CWs. This study aimed to explore the mechanism of efficient denitrification and GHG emission reduction in the enhanced CWs, providing theoretical guidance for the deep treatment of urban domestic wastewater.
Collapse
Affiliation(s)
- Mingxiao Zeng
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Yongli Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Zhanfeng Li
- China Construction Eco-Environmental Group Co., Ltd, Beijing, 100070, China
| | - Guangqing Song
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Xiping Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Xunfeng Xia
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China
| | - Zhitao Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100084, China.
| |
Collapse
|
7
|
Wu T, Ding J, Wang S, Pang JW, Sun HJ, Zhong L, Ren NQ, Yang SS. Insight into effect of polyethylene microplastic on nitrogen removal in moving bed biofilm reactor: Focusing on microbial community and species interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173033. [PMID: 38723954 DOI: 10.1016/j.scitotenv.2024.173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Microplastics (MPs) pollution has emerged as a global concern, and wastewater treatment plants (WWTPs) are one of the potential sources of MPs in the environment. However, the effect of polyethylene MPs (PE) on nitrogen (N) removal in moving bed biofilm reactor (MBBR) remains unclear. We hypothesized that PE would affect N removal in MBBR by influencing its microbial community. In this study, we investigated the impacts of different PE concentrations (100, 500, and 1000 μg/L) on N removal, enzyme activities, and microbial community in MBBR. Folin-phenol and anthrone colorimetric methods, oxidative stress and enzyme activity tests, and high-throughput sequencing combined with bioinformation analysis were used to decipher the potential mechanisms. The results demonstrated that 1000 μg/L PE had the greatest effect on NH4+-N and TN removal, with a decrease of 33.5 % and 35.2 %, and nitrifying and denitrifying enzyme activities were restrained by 29.5-39.6 % and 24.6-47.4 %. Polysaccharide and protein contents were enhanced by PE, except for 1000 μg/L PE, which decreased protein content by 65.4 mg/g VSS. The positive links of species interactions under 1000 μg/L PE exposure was 52.07 %, higher than under 500 μg/L (51.05 %) and 100 μg/L PE (50.35 %). Relative abundance of some metabolism pathways like carbohydrate metabolism and energy metabolism were restrained by 0.07-0.11 % and 0.27-0.4 %. Moreover, the total abundance of nitrification and denitrification genes both decreased under PE exposure. Overall, PE reduced N removal by affecting microbial community structure and species interactions, inhibiting some key metabolic pathways, and suppressing key enzyme activity and functional gene abundance. This paper provides new insights into assessing the risk of MPs to WWTPs, contributing to ensuring the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Silva LDC, Bernardelli JKB, Souza ADO, Lafay CBB, Nagalli A, Passig FH, Kreutz C, Carvalho KQD. Biodegradation and sorption of nutrients and endocrine disruptors in a novel concrete-based substrate in vertical-flow constructed wetlands. CHEMOSPHERE 2024; 346:140531. [PMID: 37918529 DOI: 10.1016/j.chemosphere.2023.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Removing phosphorus and endocrine-disruptors (EDC) is still challenging for low-cost sewage treatment systems. This study investigated the efficiency of three vertical-flow constructed wetlands (VFCW) vegetated with Eichhornia crassipes onto red clay (CW-RC), autoclaved aerated concrete (CW-AC), and composite from the chemical activation of autoclaved aerated concrete with white cement (CW-AAC) in the removal of organic matter, nutrients, and estrone, 17β-estradiol, and 17α-ethinylestradiol. The novelty aspect of this study is related to selecting these clay and cementitious-based materials in removing endocrine disruptors and nutrients in VFCW. The subsurface VFCW were operated in sequencing-batch mode (cycles of 48-48-72 h), treating synthetic wastewater for 308 days. The operation consisted of Stages I and II, different by adding EDC in Stage II. The presence of EDC increased the competition for dissolved oxygen (DO) and reduced the active sites available for adsorption, diminishing the removal efficiencies of TKN and TAN and total phosphorus in the systems. CW-RC showed a significant increase in COD removal from 65% to 91%, while CW-AC and CW-AAC maintained stable COD removal (84%-82% and 78%-81%, respectively). Overall, the substrates proved effective in removing EDC, with CW-AC and CW-AAC achieving >60% of removal. Bacteria Candidatus Brocadia and Candidatus Jettenia, responsible for carrying out the Anammox process, were identified in assessing the microbial community structure. According to the mass balance analysis, adsorption is the main mechanism for removing TP in CW-AC and CW-AAC, while other losses were predominant in CW-RC. Conversely, for TN removal, the adsorption is more representative in CW-RC, and the different metabolic routes of microorganisms, biofilm assimilation, and partial ammonia volatilization in CW-AC and CW-AAC. The results suggest that the composite AAC is the most suitable material for enhancing the simultaneous removal of organic matter, nutrients, and EDC in VFCW under the evaluated operational conditions.
Collapse
Affiliation(s)
- Lucas de Carvalho Silva
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cíntia Boeira Batista Lafay
- Federal University of Technology - Paraná (UTFPR), Chemistry Academic Department. Via do Conhecimento, s/n - Km 01, Fraron, 85503-390. Pato Branco, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cristiane Kreutz
- Federal University of Technology - Paraná (UTFPR), Environmental Academic Department, Rosalina Maria dos Santos St., 1233, 87301-899, Campo Mourão, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| |
Collapse
|
9
|
Xiu Y, Han Z, Song A, Miao Y, Shen Z, Zhou Y, Dong J, Liu S, Yang C. Nitrogen removal of decentralized swine wastewater by pilot-scale source reduction - anaerobic baffled reactor - zoning constructed wetlands at low temperatures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118247. [PMID: 37245313 DOI: 10.1016/j.jenvman.2023.118247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
The study developed a cost-effective integrated technology to treat swine wastewater at the pilot-scale small pigsty. The swine wastewater, which was separated rinse water after flowing through the slatted floor and the innovatively constructed liquid-liquid separate collection device, was subsequently pumped into an anaerobic baffled reactor (ABR) and then through zoning constructed wetlands (CWs) comprised of CW1, CW2, and CW3. The liquid-liquid separate collection device effectively reduced COD, NH4-N, and TN by 57.82%, 52.39%, and 50.95%, respectively. The CW1 and CW2 enhanced TN removal and nitrification, respectively, through rapid adsorption-bioregeneration of zeolite. Moreover, rice straws were used as solid carbon sources in CW3 to successfully promote denitrification at 16.0 g/(m3·d). The integrated technology (slatted floor-liquid liquid separate collection-ABR-CWs) reduced COD, NH4-N, and TN by 98.17%, 87.22%, and 87.88%, respectively, at approximately 10 °C. Microbial analysis results confirmed that the CWs exhibited apparent functional zoning, with denitrifiers dominating in CW3, nitrifiers dominating in the zeolite layers of CW1 and CW2, and denitrifiers dominating in the brick slag layers of CWs. This cost-effective integrated technology demonstrated significant potential for treating swine wastewater at low temperatures.
Collapse
Affiliation(s)
- Yanying Xiu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Zhenfeng Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Aihong Song
- College of Environmental Science and Engineering, Chang'an University, Xi'an, 710061, PR China
| | - Ying Miao
- College of Environmental Science and Engineering, Chang'an University, Xi'an, 710061, PR China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Jiao Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Shan Liu
- College of Environmental Science and Engineering, Chang'an University, Xi'an, 710061, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| |
Collapse
|