1
|
Zhang J, Zou YJ, Wang SL, Zhang WW, Chen QJ, Wang QY, Guan TK, Zhang JY, Zhao MR, Zhang GQ. The inoculation of Bacillus paralicheniformis and Streptomyces thermoviolaceus enhances the lignocellulose degradation and microbial communities during spent mushroom substrate composting. ENVIRONMENTAL RESEARCH 2024; 263:120157. [PMID: 39414111 DOI: 10.1016/j.envres.2024.120157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The burgeoning global mushroom industry has precipitated challenges related to the efficient and sustainable utilization of spent mushroom substrate (SMS). Composting is regarded as an efficient way for the ecological utilization of SMS. The addition of microbial inoculants can promote the composting process and improve the quality of compost products. This study introduced two bacterial inoculants, Bacillus paralicheniformis HL-05 (BP) and Streptomyces thermoviolaceus LC-10 (ST), into the composting process of SMS. The impact of these inoculants was evaluated through analyses of physicochemical properties, lignocellulose degradation, and high-throughput sequencing to elucidate their ecological roles and optimize the composting process. The results suggest that inoculation with BP and ST significantly prolonged the thermophilic stage by 2-3 days, representing an increase of 22.22-33.33%. Moreover, it boosted the degradation rates of cellulose, hemicellulose, and lignin by 18.37-29.77%, 35.74-50.43%, and 40.32-40.83%, respectively, compared to the control. Furthermore, inoculation rapidly altered the microbial community structure during the rapid temperature-rising stage and strengthened interconnections among composting microorganisms. The microbial inoculation substantially enhanced the proliferation of thermophilic lignocellulose-degrading microorganisms during the thermophilic stage, thereby facilitating the utilization of lignocellulose. This study proposes a novel and effective strategy for SMS composting using microbial inoculants.
Collapse
Affiliation(s)
- Jiao Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Ya-Jie Zou
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing, 100081, China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shun-Li Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Wei-Wei Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Qing-Jun Chen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Qiu-Ying Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Ti-Kun Guan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Jia-Yan Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Min-Rui Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China
| | - Guo-Qing Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, 102206, China.
| |
Collapse
|
2
|
Berglund L, Rosenstock Völtz L, Gehrmann T, Antonopoulou I, Cristescu C, Xiong S, Dixit P, Martín C, Sundman O, Oksman K. The use of spent mushroom substrate as biologically pretreated wood and its fibrillation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123338. [PMID: 39549456 DOI: 10.1016/j.jenvman.2024.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Utilization of biomass and reuse of industrial by-products and their sustainable and resource-efficient development into products that are inherently non-toxic is important to reduce the use of hazardous substances in the design, manufacture and application of biomaterials. The hypothesis in this study is that spent mushroom substrate (SMS), a by-product from mushroom production, has already undergone a biological pretreatment and thus, can be used directly as a starting material for fibrillation into value-added and functional biomaterial, without the use of toxic substances. The study show that SMS can be effectively fibrillated at a very high concentration of 6.5 wt % into fibrils using an energy demand of only 1.7 kWh kg-1, compared to commercial and chemically pretreated wood pulp at 8 kWh kg-1, under same processing conditions. SMS is a promising resource for fibrillation with natural antioxidant activity and network formation ability, which are of interest to explore further in applications such as packaging. The study shows that biological pretreatment can offer lower environmental impact related to toxic substances emitted to the environment and thus contribute to reduced impacts on categories such as water organisms, human health, terrestrial organisms, and terrestrial plants compared to chemical pretreatments.
Collapse
Affiliation(s)
- Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden.
| | - Luisa Rosenstock Völtz
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden; WWSC Wallenberg Wood Science Center, Luleå University of Technology, Sweden
| | - Timon Gehrmann
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Io Antonopoulou
- Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187, Luleå, Sweden
| | - Carmen Cristescu
- Department of Forest Biomaterial and Technology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Shaojun Xiong
- Department of Forest Biomaterial and Technology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Pooja Dixit
- Department of Chemistry, Umeå University, SE-901, 87 Umeå, Sweden
| | - Carlos Martín
- Department of Chemistry, Umeå University, SE-901, 87 Umeå, Sweden; Department of Biotechnology, Inland Norway University of Applied Sciences, N-2317, Hamar, Norway
| | - Ola Sundman
- Department of Chemistry, Umeå University, SE-901, 87 Umeå, Sweden
| | - Kristiina Oksman
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187, Luleå, Sweden; WWSC Wallenberg Wood Science Center, Luleå University of Technology, Sweden; Department of Mechanical & Industrial Engineering (MIE), University of Toronto, M5S 3G8, Toronto, Canada
| |
Collapse
|
3
|
Yi P, Li Q, Zhou X, Liang R, Ding X, Wu M, Wang K, Li J, Wang W, Lu G, Zhu T. Inoculation of Saccharomyces cerevisiae for facilitating aerobic composting of acidified food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55507-55521. [PMID: 39231841 DOI: 10.1007/s11356-024-34876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
In aerobic composting of food waste, acidification of the material (acidified food waste, AFW) often occurs and consequently leads to failure of fermentation initiation. In this study, we solved this problem by adding Saccharomyces cerevisiae inoculants. The results showed that the inoculation with S. cerevisiae effectively promoted the composting process. In 2 kg composting, inoculation with S. cerevisiae significantly elevated the pile temperatures by 4 ~ 14 °C, accompanied by a rapid increase in pH from 4.5 to 6.0. In 15 kg composting, total acid decreased faster and the thermophilic stage above 50 °C was prolonged by 3 days longer than in the control. The residual oxygen content in the reactor indicated that S. cerevisiae, which proliferated during composting, increased microbial activity and reduced ammonia emission during the thermophilic phase. Cell density analysis showed that compost inoculated with S. cerevisiae promoted thermophilic bacterial propagation. Metagenomic analysis showed that the dominant bacteria in the AFW compost were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria, and the relative abundance of Bacillus, Thermobacillus, and Thermobifida increased when inoculated with S. cerevisiae. These results indicate that the inoculation of S. cerevisiae is an effective strategy to improve the aerobic composting process of AFW by accelerating the initial phase and altering microbial community structure in the thermophilic phase. Our findings suggest that S. cerevisiae can be applied to aerobic composting of organic wastes to effectively address the problem of acidification.
Collapse
Affiliation(s)
- Puhong Yi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qinping Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xueli Zhou
- Qinghai Grassland Improvement Experimental Station, Gonghe, 813000, China
| | - Ruiqi Liang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, China
| | - Ming Wu
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, China
| | - Kun Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ji Li
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, China
| | - Weixia Wang
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangxin Lu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Tingheng Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, 215000, China.
| |
Collapse
|
4
|
Dan H, Song X, Xiang G, Song C, Dai H, Shao Y, Huang D, Luo H. The response pattern of the microbial community structure and metabolic profile of jiupei to Bacillus subtilis JP1 addition during baijiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5021-5030. [PMID: 38296914 DOI: 10.1002/jsfa.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Baijiu brewing is a complex and multifaceted multimicrobial co-fermentation process, in which various microorganisms interact to form an interdependent micro-ecosystem, subsequently influencing metabolic activities and compound production. Among these microorganisms, Bacillus, an important bacterial genus in the liquor brewing process, remains unclear in its role in shaping the brewing microbial community and its functional metabolism. RESULTS A baijiu fermentation system was constructed using B. subtilis JP1 isolated from native jiupei (grain mixture) combined with daqu (a saccharifying agent) and huangshui (a fermentation byproduct). Based on high-throughput amplicon sequencing analysis, it was evident that B. subtilis JP1 significantly influences bacterial microbial diversity and fungal community structure in baijiu fermentation. Of these, Aspergillus and Monascus emerge as the most markedly altered microbial genera in the jiupei community. Based on co-occurrence networks and bidirectional orthogonal partial least squares discriminant analysis models, it was demonstrated that the addition of B. subtilis JP1 intensified microbial interactions in jiupei fermentation, consequently enhancing the production of volatile flavor compounds such as heptanoic acid, butyl hexanoate and 3-methylthiopropanol in jiupei. CONCLUSION B. subtilis JP1 significantly alters the microbial community structure of jiupei, enhancing aroma formation during fermentation. These findings will contribute to a broader application in solid-state fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hulin Dan
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xuemiao Song
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Gangxing Xiang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | | | | | - Yan Shao
- Luzhou Laojiao Co. Ltd, Luzhou, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
5
|
Gu J, Cao Y, Sun Q, Zhang J, Xu Y, Jin H, Huang H. The bacterial community drive the humification and greenhouse gas emissions during plant residues composting under different aeration rates. ENVIRONMENTAL TECHNOLOGY 2024:1-15. [PMID: 38920117 DOI: 10.1080/09593330.2024.2369732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
This study investigated the effects of different aeration intensities on organic matter (OM) degradation, greenhouse gas emissions (GHG) as well as humification during plant residue composting. Three intermittent aeration intensities of 0.084 (Tlow), 0.19 (Tmedium) and 0.34 (Thigh) L min-1kg-1 DM with 30 min on/30 min off were conducted on a lab-scale composting experiment. Results showed that OM mineralization in Thigh was more evident than Tlow and Tmedium, resulting in the highest humic acid content. Humic acid content in Tmedium and Thigh was 15.7% and 18.5% higher than that in Tlow. The average O2 concentration was 4.9%, 9.5% and 13.6% for Tlow, Tmedium and Thigh. Compared with Tmedium and Thigh, Tlow reduced CO2 and N2O emissions by 18.3%-39.6% and 72.4%-63.9%, but the CH4 emission was highest in Tlow. But the total GHG emission was the lowest in Thigh. Linear Discriminant Analysis Effect Size analysis showed that the core bacteria within Tlow mainly belonged to Anaerolineaceae, which was significantly negatively correlated to the emission of CH4. Thermostaphylospora, Unclassified_Vicinamibacteraceae and Sulfurifustis were identified as core bacteria in Tmedium and Thigh, and these genus were significantly postively correlated to CO2 and N2O emissions. Redundancy analysis showed that total orgnic carbon, O2 and electrical conductivity were the key factors affecting the evolution of bacterial community.
Collapse
Affiliation(s)
- Junyu Gu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
| | - Yun Cao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Qian Sun
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Jing Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Yueding Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing, People's Republic of China
- Key Laboratory of Crop and Livestock Integrated Farming, Ministry of Agriculture, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| | - Hongying Huang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Yu L, An Z, Xie D, Yin D, Xie G, Gao X, Xiao Y, Liu J, Fang Z. From waste to protein: a new strategy of converting composted distilled grain wastes into animal feed. Front Microbiol 2024; 15:1405564. [PMID: 38881654 PMCID: PMC11176434 DOI: 10.3389/fmicb.2024.1405564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Distilled grain waste (DGW) is rich in nutrients and can be a potential resource as animal feed. However, DGW contains as much as 14% lignin, dramatically reducing the feeding value. White-rot fungi such as Pleurotus ostreatus could preferentially degrade lignin with high efficiency. However, lignin derivatives generated during alcohol distillation inhibit P. ostreatus growth. Thus, finding a new strategy to adjust the DGW properties to facilitate P. ostreatus growth is critical for animal feed preparation and DGW recycling. In this study, three dominant indigenous bacteria, including Sphingobacterium thermophilum X1, Pseudoxanthomonas byssovorax X3, and Bacillus velezensis 15F were chosen to generate single and compound microbial inoculums for DGW composting to prepare substrates for P. ostreatus growth. Compared with non-inoculated control or single microbial inoculation, all composite inoculations, especially the three-microbial compound, led to faster organic metabolism, shorter composting process, and improved physicochemical properties of DGW. P. ostreatus growth assays showed the fastest mycelial colonization (20.43 μg·g-1 ergosterol) and extension (9 mm/d), the highest ligninolytic enzyme activities (Lac, 152.68 U·g-1; Lip, 15.56 U·g-1; MnP, 0.34 U·g-1; Xylanase, 10.98 U·g-1; FPase, 0.71 U·g-1), and the highest lignin degradation ratio (30.77%) in the DGW sample after 12 h of composting with the three-microbial compound inoculation when compared to other groups. This sample was relatively abundant in bacteria playing critical roles in amino acid, carbohydrate, energy metabolism, and xenobiotic biodegradation, as suggested by metagenomic analysis. The feed value analysis revealed that P. ostreatus mycelia full colonization in composted DGW led to high fiber content retention and decreased lignin content (final ratio of 5% lignin) but elevated protein concentrations (about 130 g·kg-1 DM). An additional daily weight gain of 0.4 kg/d was shown in cattle feeding experiments by replacing 60% of regular feed with it. These findings demonstrate that compound inoculant consisting of three indigenous microorganisms is efficient to compost DGW and facilitate P. ostreatus growth. P. ostreatus decreased the lignin content of composted DGW during its mycelial growth, improving the quality of DGW for feeding cattle.
Collapse
Affiliation(s)
- Lei Yu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zichao An
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Dengdeng Xie
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Diao Yin
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Guopai Xie
- Anhui Golden Seed Winery Co., Ltd., Fuyang, China
| | - Xuezhi Gao
- Anhui Golden Seed Winery Co., Ltd., Fuyang, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
7
|
Li H, Yang Z, Zhang C, Shang W, Zhang T, Chang X, Wu Z, He Y. Effect of microbial inoculum on composting efficiency in the composting process of spent mushroom substrate and chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120145. [PMID: 38306857 DOI: 10.1016/j.jenvman.2024.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
This work aimed to investigate the microbial mechanisms for the improvement of composting efficiency driven by the compound microbial inoculum (MI) (Bacillus subtilis SL-44, Enterobacter hormaechei Rs-189 and Trichoderma reesei) during co-composting of spent mushroom substrate (SMS) and chicken manure (CM). The treatments used in the study were as follows: 1) MI (inoculation with microbial inoculum), 2) CI (inoculation with commercial microbial inoculum), and 3) CK (without inoculation). The results demonstrated that MI increased the seed germination index (GI) by 25.11%, and contents of humus, humic acid (HA) and available phosphorus (AP) were correspondingly promoted by 12.47%, 25.93% and 37.16%, respectively. The inoculation of MI increased the temperature of the thermophilic stage by 3-7 °C and achieved a cellulose degradation rate of 52.87%. 16S rRNA gene analysis indicated that Actinobacteria (11.73-61.61%), Firmicutes (9.46-65.07%), Proteobacteria (2.86-32.17%) and Chloroflexi (0.51-10.92%) were the four major phyla during the inoculation composting. Bacterial metabolic functional analysis revealed that pathways involved in amino acid and glycan biosynthesis and metabolism were boosted in the thermophilic phase. There was a positive correlation between bacterial communities and temperature, humification and phosphorus fractions. The average dry weight, fresh weight and seedling root length in the seedling substrates adding MI compost were 1.13, 1.23 and 1.06 times higher than those of the CK, respectively. This study revealed that biological inoculation could improve the composting quality and efficiency, potentially benefiting the resource utilization of agricultural waste resources.
Collapse
Affiliation(s)
- Haijie Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Zihe Yang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Chuanyu Zhang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Weiwei Shang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Tianlin Zhang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Xiaojian Chang
- Xi 'an Agricultural Technology Extension Center, Xi 'an, 710061, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| |
Collapse
|
8
|
Zhan Y, Xu S, Hou Z, Gao X, Su J, Peng B, Zhao J, Wang Z, Cheng M, Zhang A, Guo Y, Ding G, Li J, Wei Y. Co-inoculation of phosphate-solubilizing bacteria and phosphate accumulating bacteria in phosphorus-enriched composting regulates phosphorus transformation by facilitating polyphosphate formation. BIORESOURCE TECHNOLOGY 2023; 390:129870. [PMID: 37839642 DOI: 10.1016/j.biortech.2023.129870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to explore the impact of co-inoculating phosphate-solubilizing bacteria (PSB) and phosphate accumulating bacteria (PAB) on phosphorus forms transformation, microbial biomass phosphorus (MBP) and polyphosphate (Poly-P) accumulation, bacterial community composition in composting, using high throughput sequencing, PICRUSt 2, network analysis, structural equation model (SEM) and random forest (RF) analysis. The results demonstrated PSB-PAB co-inoculation (T1) reduced Olsen-P content (1.4 g) but had higher levels of MBP (74.2 mg/kg) and Poly-P (419 A.U.) compared to PSB-only (T0). The mantel test revealed a significantly positive correlation between bacterial diversity and both bioavailable P and MBP. Halocella was identified as a key genus related to Poly-P synthesis by network analysis. SEM and RF analysis showed that pH and bacterial community had the most influence on Poly-P synthesis, and PICRUSt 2 analysis revealed inoculation of PAB increased ppk gene abundance in T1. Thus, PSB-PAB co-inoculation provides a new idea for phosphorus management.
Collapse
Affiliation(s)
- Yabin Zhan
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhuonan Hou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xin Gao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bihui Peng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jinyue Zhao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Zhigang Wang
- DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ake Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Yanbin Guo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
9
|
Nie L, Wan W. Nutrient-cycling functional gene diversity mirrors phosphorus transformation during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 386:129504. [PMID: 37468004 DOI: 10.1016/j.biortech.2023.129504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Elucidating ecological mechanism underlying phosphorus transformation mediated by phosphate-solubilizing bacteria (PSB) during manure composting is an important but rarely investigated subject. The research objective is to disentangle ecological functions of the inoculation of PSB Pseudomonas sp. WWJ-22 during chicken manure composting based on gene quantification and amplicon sequencing. There are large dynamic changes in phosphorus fractions, gene abundances, and bacterial community structure. The PSB addition notably increased available phosphorus from 0.29-0.89 g kg-1 to 0.49-1.39 g kg-1 and significantly affected phosphorus fractionation. The PSB inoculation significantly affected composition of nutrient-cycling functional genes (NCFGs), and notably influenced bacterial community composition and function. Compost bacteria showed significant phylogenetic signals in response to phosphorus fractions, and stochastic processes dominated bacterial community assembly. Results emphasized that PSB addition increased functional redundancy, phylogenetic conservatism, and stochasticity-dominated assembly of bacterial community. Overall, findings highlight NCFG diversity can be a bio-indicator to mirror phosphorus transformation.
Collapse
Affiliation(s)
- Liang Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|