1
|
Oujdi M, Chafik Y, Boukroute A, Bourgerie S, Sena-Velez M, Morabito D, Addi M. Exploring Phytoremediation Potential: A Comprehensive Study of Flora Inventory and Soil Heavy Metal Contents in the Northeastern Mining Districts of Morocco. PLANTS (BASEL, SWITZERLAND) 2024; 13:1811. [PMID: 38999651 PMCID: PMC11244480 DOI: 10.3390/plants13131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Mining activities produce waste materials and effluents with very high metal concentrations that can negatively impact ecosystems and human health. Consequently, data on soil and plant metal levels are crucial for evaluating pollution severity and formulating soil reclamation strategies, such as phytoremediation. Our research focused on soils and vegetation of a highly contaminated site with potentially toxic metals (Pb, Zn, and Cu) in the Touissit mining districts of eastern Morocco. Vegetation inventory was carried out in three mine tailings of the Touissit mine fields using the "field tower" technique. Here, 91 species belonging to 23 families were inventoried: the most represented families were Poaceae and Asteraceae, and the biological spectrum indicated a predominance of Therophytes (55.12%). From the studied areas, 15 species were selected and collected in triplicate on the tailings and sampled with their corresponding rhizospheric soils, and analyzed for Pb, Zn, and Cu concentrations. Reseda lutea, lotus marocanus, and lotus corniculatus can be considered as hyperaccumulators of Pb, as these plants accumulated more than 1000 mg·kg-1 in their aerial parts. According to TF, these plant species could serve as effective plants for Pb phytoextraction.
Collapse
Affiliation(s)
- Mohammed Oujdi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| | - Yassine Chafik
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Azzouz Boukroute
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| | - Sylvain Bourgerie
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Marta Sena-Velez
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Domenico Morabito
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Mohamed Addi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| |
Collapse
|
2
|
Rubio-Noguez D, Breton-Deval L, Salinas-Peralta I, Juárez K, Galicia L. Pollution pressure drives microbial assemblages that improve the phytoremediation potential of heavy metals by Ricinus communis. World J Microbiol Biotechnol 2024; 40:241. [PMID: 38866993 PMCID: PMC11169050 DOI: 10.1007/s11274-024-04025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Due to the rapid expansion of industrial activity, soil pollution has intensified. Plants growing in these polluted areas have developed a rhizobiome uniquely and specially adapted to thrive in such environments. However, it remains uncertain whether pollution acts as a sufficiently selective force to shape the rhizobiome, and whether these adaptations endure over time, potentially aiding in long-term phytoremediation. Therefore, in the present study, we aimed to compare whether the microbiome associated with roots from plants germinated in polluted riverbanks will improve the phytoremediation of Cd and Pb under mesocosm experiments compared with plants germinating in a greenhouse. The experimental design was a factorial 2 × 2, i.e., the origin of the plant and the presence or absence of 100 mg/L of Cd and 1000 mg/L of Pb. Our results showed that plants germinated in polluted riverbanks have the capacity to accumulate twice the amount of Pb and Cd during mesocosm experiments. The metagenomic analysis showed that plants from the river exposed to heavy metals at the end of mesocosm experiments were rich in Rhizobium sp. AC44/96 and Enterobacter sp. EA-1, Enterobacter soli, Pantoea rwandensis, Pantoea endophytica. In addition, those plants were uniquely associated with Rhizobium grahamii, which likely contributed to the differences in the levels of phytoremediation achieved. Furthermore, the functional analysis revealed an augmented functional potential related to hormones, metallothioneins, dismutases, and reductases; meanwhile, the plants germinated in the greenhouse showed an unspecific strategy to exceed heavy metal stress. In conclusion, pollution pressure drives stable microbial assemblages, which could be used in future phytostabilization and phytoremediation experiments.
Collapse
Affiliation(s)
- Daniela Rubio-Noguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Luz Breton-Deval
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, México.
- Consejo Nacional de Ciencia y Tecnología, Avenida de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México, 03940, México.
| | - Ilse Salinas-Peralta
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Katy Juárez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Leopoldo Galicia
- Instituto de Geografía Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Investigación Científica, Ciudad Universitaria, C.U., Ciudad de México, CDMX, 04510, México
| |
Collapse
|
3
|
James A, Rene ER, Bilyaminu AM, Chellam PV. Advances in amelioration of air pollution using plants and associated microbes: An outlook on phytoremediation and other plant-based technologies. CHEMOSPHERE 2024; 358:142182. [PMID: 38685321 DOI: 10.1016/j.chemosphere.2024.142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Globally, air pollution is an unfortunate aftermath of rapid industrialization and urbanization. Although the best strategy is to prevent air pollution, it is not always feasible. This makes it imperative to devise and implement techniques that can clean the air continuously. Plants and microbes have a natural potential to transform or degrade pollutants. Hence, strategies that use this potential of living biomass to remediate air pollution seem to be promising. The simplest future trend can be planting suitable plant-microbe species capable of removing air pollutants like SO2, CO2, CO, NOX and particulate matter (PM) along roadsides and inside the buildings. Established wastewater treatment strategies such as microbial fuel cells (MFC) and constructed wetlands (CW) can be suitably modified to ameliorate air pollution. Green architecture involving green walls and green roofs is facile and aesthetic, providing urban ecosystem services. Certain microbe-based bioreactors such as bioscrubbers and biofilters may be useful in small confined spaces. Several generative models have been developed to assist with planning and managing green spaces in urban locales. The physiological limitations of using living organisms can be circumvent by applying biotechnology and transgenics to improve their potential. This review provides a comprehensive update on not just the plants and associated microbes for the mitigation of air pollution, but also lists the technologies that are available and/or can be modified and used for air pollution control. The article also gives a detailed analysis of this topic in the form of strengths-weaknesses-opportunities-challenges (SWOC). The strategies mentioned in this review would help to attain corporate Environmental Social and Governance (ESG) and Sustainable Development Goals (SDGs), while reducing carbon footprint in the urban scenario. The review aims to emphasise that urbanization is possible while tackling air pollution using facile, green techniques involving plants and associated microbes.
Collapse
Affiliation(s)
- Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
4
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
5
|
Chen ZJ, Li ML, Gao SS, Sun YB, Han H, Li BL, Li YY. Plant Growth-Promoting Bacteria Influence Microbial Community Composition and Metabolic Function to Enhance the Efficiency of Hybrid pennisetum Remediation in Cadmium-Contaminated Soil. Microorganisms 2024; 12:870. [PMID: 38792702 PMCID: PMC11124114 DOI: 10.3390/microorganisms12050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-Ying Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China; (Z.-J.C.)
| |
Collapse
|
6
|
Jia Q, Sun J, Gan Q, Shi NN, Fu S. Zea mays cultivation, biochar, and arbuscular mycorrhizal fungal inoculation influenced lead immobilization. Microbiol Spectr 2024; 12:e0342723. [PMID: 38393320 PMCID: PMC10986566 DOI: 10.1128/spectrum.03427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Plant cultivation can influence the immobilization of heavy metals in soil. However, the roles of soil amendments and microorganisms in crop-based phytoremediation require further exploration. In this study, we evaluated the impact of Zea mays L. cultivation, biochar application, and arbuscular mycorrhizal fungi (AMF) inoculation on soil lead (Pb) immobilization. Our results indicated that biochar addition resulted in a significant, 42.00%, reduction in AMF colonization. Plant cultivation, AMF inoculation, and biochar addition all contributed to enhanced Pb immobilization, as evidenced by decreased levels of diethylenetriaminepentaacetic acid- and CaCl2-extractable Pb in the soil. Furthermore, soil subjected to plant cultivation with AMF and biochar displayed reduced concentrations of bioavailable Pb. Biochar addition altered the distribution of Pb fractions in the soil, transforming the acid-soluble form into the relatively inert reducible and oxidizable forms. Additionally, biochar, AMF, and their combined use promoted maize growth parameters, including height, stem diameter, shoot and root biomass, and phosphorus uptake, while simultaneously reducing the shoot Pb concentration. These findings suggest a synergistic effect in Pb phytostabilization. In summary, despite the adverse impact of biochar on mycorrhizal growth, cultivating maize with the concurrent use of biochar and AMF emerges as a recommended and effective strategy for Pb phytoremediation.IMPORTANCEHeavy metal contamination in soil is a pressing environmental issue, and phytoremediation has emerged as a sustainable approach for mitigating this problem. This study sheds light on the potential of maize cultivation, biochar application, and arbuscular mycorrhizal fungi (AMF) inoculation to enhance the immobilization of Pb in contaminated soil. The findings demonstrate that the combined use of biochar and AMF during maize cultivation can significantly improve Pb immobilization and simultaneously enhance maize growth, offering a promising strategy for sustainable and effective Pb phytoremediation practices. This research contributes valuable insights into the field of phytoremediation and its potential to address heavy metal pollution in agricultural soils.
Collapse
Affiliation(s)
- Qiong Jia
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Jiahua Sun
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Qiuyu Gan
- Miami College of Henan University, Kaifeng, China
| | - Nan-Nan Shi
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| | - Shenglei Fu
- College of Geography and Environmental Science, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Henan University, Ministry of Education, Kaifeng, China
| |
Collapse
|
7
|
Yasin MU, Haider Z, Munir R, Zulfiqar U, Rehman M, Javaid MH, Ahmad I, Nana C, Saeed MS, Ali B, Gan Y. The synergistic potential of biochar and nanoparticles in phytoremediation and enhancing cadmium tolerance in plants. CHEMOSPHERE 2024; 354:141672. [PMID: 38479680 DOI: 10.1016/j.chemosphere.2024.141672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.
Collapse
Affiliation(s)
- Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zulqarnain Haider
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rehman
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haseeb Javaid
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Irshan Ahmad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Sulaman Saeed
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bahar Ali
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Ali M, Aslam A, Qadeer A, Javied S, Nisar N, Hassan N, Hussain A, Ali B, Iqbal R, Chaudhary T, Alwahibi MS, Elshikh MS. Domestic wastewater treatment by Pistia stratiotes in constructed wetland. Sci Rep 2024; 14:7553. [PMID: 38555358 PMCID: PMC10981706 DOI: 10.1038/s41598-024-57329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
The objective of the study was to evaluate the performance of Pistia stratiotes for treatment of domestic wastewater in a free surface water flow constructed wetland. The objective of the study was to evaluate contaminants removal efficiency of the constructed wetland vegetated with P. stratiotes in treatment of domestic wastewater against Hydraulic retention time (HRT) of 10, 20 and 30 days was investigated. This asks for newer and efficient low-cost nature-based water treatment system which along with cost takes into consideration the sustainability of the ecosystem. Five constructed wetland setups improved the wastewater quality and purify it significantly by reducing the TDS by 83%, TSS by 82%, BOD by 82%, COD by 81%, Chloride by 80%, Sulfate by 77%, NH3 by 84% and Total Oil and Grease by 74%. There was an increase in pH of about 11.9%. Color and odor of wastewater was also improved significantly and effectively. It was observed that 30 days' HRT was optimum for the treatment of domestic wastewater. The final effluent was found to be suitable as per national environmental quality standards and recycled for watering plants and crop irrigation but not for drinking purposes. The treatment in constructed wetland system was found to be economical, as the cost of construction only was involved and operational and maintenance cost very minimal. Even this research was conducted on the sole purpose of commuting the efficiency of pollutant removal in short span time.
Collapse
Affiliation(s)
- Majid Ali
- Environmental Sciences Department, The University of Lahore, Lahore, 54000, Pakistan
| | - Ambreen Aslam
- Environmental Sciences Department, The University of Lahore, Lahore, 54000, Pakistan.
| | - Abdul Qadeer
- Mehran University of Engineering and Technology, Jamshoro, 76060, Pakistan
| | - Sabiha Javied
- Environmental Sciences Department, The University of Lahore, Lahore, 54000, Pakistan
| | - Numrah Nisar
- Lahore College for Women University, Lahore, 54000, Pakistan
| | - Nayyer Hassan
- English Department, University of Lahore, Lahore, 54000, Pakistan
| | - Afzal Hussain
- Environmental Sciences Department, The University of Lahore, Lahore, 54000, Pakistan.
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Talha Chaudhary
- Faculty of Agricultural and Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary.
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Al-Obaidi JR, Jamaludin AA, Rahman NA, Ahmad-Kamil EI. How plants respond to heavy metal contamination: a narrative review of proteomic studies and phytoremediation applications. PLANTA 2024; 259:103. [PMID: 38551683 DOI: 10.1007/s00425-024-04378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
MAIN CONCLUSION Heavy metal pollution caused by human activities is a serious threat to the environment and human health. Plants have evolved sophisticated defence systems to deal with heavy metal stress, with proteins and enzymes serving as critical intercepting agents for heavy metal toxicity reduction. Proteomics continues to be effective in identifying markers associated with stress response and metabolic processes. This review explores the complex interactions between heavy metal pollution and plant physiology, with an emphasis on proteomic and biotechnological perspectives. Over the last century, accelerated industrialization, agriculture activities, energy production, and urbanization have established a constant need for natural resources, resulting in environmental degradation. The widespread buildup of heavy metals in ecosystems as a result of human activity is especially concerning. Although some heavy metals are required by organisms in trace amounts, high concentrations pose serious risks to the ecosystem and human health. As immobile organisms, plants are directly exposed to heavy metal contamination, prompting the development of robust defence mechanisms. Proteomics has been used to understand how plants react to heavy metal stress. The development of proteomic techniques offers promising opportunities to improve plant tolerance to toxicity from heavy metals. Additionally, there is substantial scope for phytoremediation, a sustainable method that uses plants to extract, sequester, or eliminate contaminants in the context of changes in protein expression and total protein behaviour. Changes in proteins and enzymatic activities have been highlighted to illuminate the complex effects of heavy metal pollution on plant metabolism, and how proteomic research has revealed the plant's ability to mitigate heavy metal toxicity by intercepting vital nutrients, organic substances, and/or microorganisms.
Collapse
Affiliation(s)
- Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
| | - Azi Azeyanty Jamaludin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
- Center of Biodiversity and Conservation, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Norafizah Abdul Rahman
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences (AGLS), Science South Building, Lincoln University, Lincoln, 7608, Canterbury, New Zealand
| | - E I Ahmad-Kamil
- Malaysian Nature Society (MNS), JKR 641, Jalan Kelantan, Bukit Persekutuan, 50480, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:913. [PMID: 38592933 PMCID: PMC10976221 DOI: 10.3390/plants13060913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The paper provides a comprehensive examination of heavy metal stress on medicinal plants, focusing on its impact on antioxidant capacity and biosynthetic pathways critical to their therapeutic potential. It explores the complex relationship between heavy metals and the physiological and biochemical responses of medicinal plants, highlighting how metal stress disrupts biosynthetic pathways, altering concentrations of secondary metabolites. This disruption may compromise the overall quality and efficacy of medicinal plants, requiring a holistic understanding of its cumulative impacts. Furthermore, the study discusses the potential of targeted genetic editing to enhance plant resilience against heavy metal stress by manipulating genes associated with antioxidant defenses. This approach represents a promising frontier in safeguarding medicinal plants in metal-contaminated environments. Additionally, the research investigates the role of phytohormone signaling in plant adaptive mechanisms to heavy metal stress, revealing its influence on biochemical and physiological responses, thereby adding complexity to plant adaptation. The study underscores the importance of innovative technologies and global cooperation in protecting medicinal plants' therapeutic potential and highlights the need for mitigation strategies to address heavy metal contamination effectively.
Collapse
Affiliation(s)
- Dana-Mihaela Asiminicesei
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Daniela Ionela Fertu
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Al. I. Cuza Street, 800002 Galati, Romania
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
11
|
Singh PK, Yadav JS, Kumar I, Kumar U, Sharma RK. Screening of mustard cultivars for phytoremediation of heavy metals contamination in wastewater irrigated soil systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:321. [PMID: 38418671 DOI: 10.1007/s10661-024-12506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
The mustard (Brassica juncea L.) plant is a well-known and widely accepted hyper-accumulator of heavy metals. The genetic makeup of mustard's cultivars may significantly impact their phytoremediation capabilities. The present study aimed to investigate the growth performance, yield attributes, and heavy metal accumulation potential of B. juncea cv. Varuna, NRCHB 101, RH 749, Giriraj, and Kranti, cultivated in soil irrigated with wastewater (EPS) and bore-well water (MPS). EPS contributed more Cr, Cd, Cu, Zn, and Ni to tested mustard cultivars than the MPS. EPS reduced morphological, biochemical, physiological, and yield attributes of tested mustard cultivars significantly (p < 0.05) than the MPS. Among the tested cultivars of mustard plants, Varuna had the highest heavy metal load with the lowest harvest index (35.8 and 0.21, respectively). Whereas NRCHB 101 showed the lowest heavy metal load with the highest harvest index (26.9 and 0.43, respectively). The present study suggests that B. juncea cv. Varuna and NRCHB 101 could be used for the phytoextraction of heavy metals and reducing their contamination in food chain, respectively in wastewater irrigated areas of peri-urban India. The outcomes of the present study can also be utilized to develop a management strategy for sustainable agriculture in heavy metal polluted areas resulting from long-term wastewater irrigation.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Jay Shankar Yadav
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India
| | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, -221005, Varanasi, India.
| |
Collapse
|
12
|
Liang J, Chang J, Xie J, Yang L, Sheteiwy MS, Moustafa ARA, Zaghloul MS, Ren H. Microorganisms and Biochar Improve the Remediation Efficiency of Paspalum vaginatum and Pennisetum alopecuroides on Cadmium-Contaminated Soil. TOXICS 2023; 11:582. [PMID: 37505548 PMCID: PMC10383370 DOI: 10.3390/toxics11070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Phytoremediation can help remediate potential toxic elements (PTE) in soil. Microorganisms and soil amendments are effective means to improve the efficiency of phytoremediation. This study selected three microorganisms that may promote phytoremediation, including bacteria (Ceratobasidium), fungi (Pseudomonas mendocina), and arbuscular-mycorrhizal fungi (AMF, Funneliformis caledonium). The effects of single or mixed inoculation of three microorganisms on the phytoremediation efficiency of Paspalum vaginatum and Pennisetum alopecuroides were tested under three different degrees of cadmium-contaminated soil (low 10 mg/kg, medium 50 mg/kg, and high 100 mg/kg). The results showed that single inoculation of AMF or Pseudomonas mendocina could significantly increase the biomass of two plants under three different degrees of cadmium-contaminated soil, and the growth-promoting effect of AMF was better than Pseudomonas mendocina. However, simultaneous inoculation of these two microorganisms did not show a better effect than the inoculation of one. Inoculation of Ceratobasidium reduced the biomass of the two plants under high concentrations of cadmium-contaminated soil. Among all treatments, the remediation ability of the two plants was the strongest when inoculated with AMF alone. On this basis, this study explored the effect of AMF combined with corn-straw-biochar on the phytoremediation efficiency of Paspalum vaginatum and Pennisetum alopecuroides. The results showed that biochar could affect plant biomass and Cd concentration in plants by reducing Cd concentration in soil. The combined use of biochar and AMF increased the biomass of Paspalum vaginatum by 8.9-48.6% and the biomass of Pennisetum alopecuroides by 8.04-32.92%. Compared with the single use of AMF or biochar, the combination of the two is better, which greatly improves the efficiency of phytoremediation.
Collapse
Affiliation(s)
- Jiahao Liang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiechao Chang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayao Xie
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Liquan Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | | | - Mohamed S Zaghloul
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Haiyan Ren
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Menhas S, Yang X, Hayat K, Bundschuh J, Chen X, Hui N, Zhang D, Chu S, Zhou Y, Ali EF, Shahid M, Rinklebe J, Lee SS, Shaheen SM, Zhou P. Pleiotropic melatonin-mediated responses on growth and cadmium phytoextraction of Brassica napus: A bioecological trial for enhancing phytoremediation of soil cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131862. [PMID: 37329597 DOI: 10.1016/j.jhazmat.2023.131862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Melatonin (MT) has recently gained significant scientific interest, though its mechanism of action in enhancing plant vigor, cadmium (Cd) tolerance, and Cd phytoremediation processes are poorly understood. Therefore, here we investigated the beneficial role of MT in improving growth and Cd remediation potential of rapeseed (Brassica napus). Plants, with or without MT (200 µM L-1), were subjected to Cd stress (30 mg kg1). Without MT, higher Cd accumulation (up to 99%) negatively affected plant growth and developmental feature as well as altered expression of several key genes (DEGs) involved in different molecular pathways of B. napus. As compared to only Cd-stressed counterparts, MT-treated plants exhibited better physiological performance as indicated by improved leaf photosynthetic and gaseous exchange processes (3-48%) followed by plant growth (up to 50%), fresh plant biomass (up to 45%), dry plant biomass (up to 32%), and growth tolerance indices (up to 50%) under Cd exposure. MT application enhanced Cd tolerance and phytoremediation capacity of B. napus by augmenting (1) Cd accumulation in plant tissues and its translocation to above-ground parts (by up to 45.0%), (2) Cd distribution in the leaf cell wall (by up to 42%), and (3) Cd detoxification by elevating phytochelatins (by up to 8%) and metallothioneins (by upto 14%) biosynthesis, in comparison to Cd-treated plants. MT played a protective role in stabilizing hydrogen peroxide and malondialdehyde levels in the tissue of the Cd-treated plants by enhancing the content of osmolytes (proline and total soluble protein) and activities of antioxidant enzymes (SOD, CAT, APX and GR). Transcriptomic analysis revealed that MT regulated 1809 differentially expressed genes (828 up and 981 down) together with 297 commonly expressed DEGs (CK vs Cd and Cd vs CdMT groups) involved in plant-pathogen interaction pathway, protein processing in the endoplasmic reticulum pathway, mitogen-activated protein kinase signaling pathway, and plant hormone signal transduction pathway which ultimately promoted plant growth and Cd remediation potential in the Cd-stressed plants. These results provide insights into the unexplored pleiotropic beneficial action of MT in enhancing in the growth and Cd phytoextraction potential of B. napus, paving the way for developing Cd-tolerant oilseed crops with higher remediation capacity as a bioecological trial for enhancing phytoremediation of hazardous toxic metals in the environment.
Collapse
Affiliation(s)
- Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jochen Bundschuh
- Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, ROC; School of Civil Engineering and Surveying, University of Southern Queensland, Australia
| | - Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Yuanfei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari 61100, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, South Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, PR China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, PR China.
| |
Collapse
|