1
|
Li D, Chen L, Qiu X. Rapid synthesis of ferulic acid-derived lignin coated silver nanoparticles with low cytotoxicity and high antibacterial activity. Int J Biol Macromol 2024; 277:134471. [PMID: 39102905 DOI: 10.1016/j.ijbiomac.2024.134471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Antibiotic resistance and the rise of untreatable bacterial infections pose severe threats to human health. Silver nanoparticles (AgNPs) have emerged as a promising antibacterial solution due to their broad-spectrum effectiveness. However, their relatively high cytotoxicity has limited their widespread application. In this study, ferulic acid (FA) was used as a reducing agent, while silver oxide served as a silver precursor to rapidly prepare FA-derived lignin (FAL) coated AgNPs (AgNPs@FAL) with a size ranging from 34.8 to 77.1 nm. Density functional theory (DFT) calculations indicated that the coating of FAL endowed AgNPs@FAL with high stability, preventing the oxidation of AgNPs prior to antibacterial applications. Cell experiments further indicated that AgNPs@FAL exhibited lower cell toxicity (∼80 % viability of normal kidney cells cultured at 25 μg/mL AgNPs@FAL) compared to fully exposed commercially available citrate-modified AgNPs (AgNPs@CA). Antibacterial experiments revealed that the minimum inhibitory concentrations (MIC) of AgNPs@FAL against E. coli and S. aureus were 12.5 μg/mL and 25 μg/mL, respectively, surpassing the antibacterial effect of AgNPs@CA, as well as ampicillin and penicillin. Additionally, AgNPs@FAL was capable of disrupting E. coli and S. aureus biofilm formation. This novel AgNPs@FAL formulation presents a promising antibacterial solution, addressing limitations observed in conventional drugs.
Collapse
Affiliation(s)
- Dan Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
2
|
Hazman Ö, Khamidov G, Yilmaz MA, Bozkurt MF, Kargioğlu M, Tukhtaev D, Erol I. Environmentally friendly silver nanoparticles synthesized from Verbascum nudatum var. extract and evaluation of its versatile biological properties and dye degradation activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33482-33494. [PMID: 38683425 PMCID: PMC11136752 DOI: 10.1007/s11356-024-33424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
In the present study, green synthesis of silver nanoparticles (VNE-AgNPs) via Verbascum nudatum extract was carried out for the first time. The synthesized AgNPs were characterized by different spectral methods such as UV-vis, FTIR, XRD, TEM, and EDAX. According to TEM analyses, the average size range of AgNPs was 17-21 nm, and the dominant peaks in the 111°, 200°, 221°, and 311° planes in the XRD pattern indicated the Ag-NPs FCC crystal structure. FTIR data showed that VNE-AgNPs interacted with many reducing, capping, and stabilizing phytochemicals during green synthesis. VNE-AgNPs had higher antibacterial activity against S. aureus and E. coli bacterial strains with a maximum inhibition zone of 21 and 18 mm, respectively, than penicillin 5 IU, used as a positive control in the study. The cytotoxic effect of VNE-AgNPs appeared at a concentration of 50 µg/mL in L929 cells and 5 µg/mL in cancer (A549) cells. When the impact of VNE-AgNPs and C-AgNPs on inflammation was compared, it was found that VNE-AgNPs increased TNF-α levels (333.45 ± 67.20 ng/mg-protein) statistically (p < 0.05) more than TNF-α levels (256.92 ± 27.88 ng/mg-protein) in cells treated with C-AgNPs. VNE-Ag-NPs were found to have a degradation efficiency of 65% against methylene blue (MB) dye within 3 h.
Collapse
Affiliation(s)
- Ömer Hazman
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd-15, Samarkand, Uzbekistan
| | - Gofur Khamidov
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd-15, Samarkand, Uzbekistan
| | - Mustafa Abdullah Yilmaz
- Science and Technology Research and Application Center, Dicle University, 21280, Diyarbakır, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, 21280, Diyarbakır, Turkey
| | - Mehmet Fatih Bozkurt
- Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Mustafa Kargioğlu
- Faculty of Science and Arts, Molecular Biology and Genetics, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Davlat Tukhtaev
- Department of Organic Synthesis and Bioorganic Chemistry, Institute of Biochemistry, Samarkand State University, University Blvd-15, Samarkand, Uzbekistan
| | - Ibrahim Erol
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey.
- Department of Polymer Chemistry and Chemical Technology, Institute of Biochemistry, Samarkand State University, University Blvd-15, Samarkand, Uzbekistan.
| |
Collapse
|
3
|
Mekky AE, Abdelaziz AEM, Youssef FS, Elaskary SA, Shoun AA, Alwaleed EA, Gaber MA, Al-Askar AA, Alsamman AM, Yousef A, AbdElgayed G, Suef RA, Selim MA, Saied E, Khedr M. Unravelling the Antimicrobial, Antibiofilm, Suppressing Fibronectin Binding Protein A ( fnba) and cna Virulence Genes, Anti-Inflammatory and Antioxidant Potential of Biosynthesized Solanum lycopersicum Silver Nanoparticles. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:515. [PMID: 38541241 PMCID: PMC10972527 DOI: 10.3390/medicina60030515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 01/06/2025]
Abstract
Background and Objectives: Urinary tract infections [UTIs] are considered the third most known risk of infection in human health around the world. There is increasing appreciation for the pathogenicity of Gram-positive and Gram-negative strains in UTIs, aside from fungal infection, as they have numerous virulence factors. Materials and Methods: In this study, fifty urine samples were collected from patients suffering from UTI. Among the isolates of UTI microbes, six isolates were described as MDR isolates after an antibiotic susceptibility test carried out using ten different antibiotics. An alternative treatment for microbial elimination involved the use of biosynthesized silver nanoparticles (AgNPs) derived from Solanum lycopersicum [S. cumin]. Results: The sizes and shapes of AgNPs were characterized through TEM imaging, which showed spherical particles in a size range of 35-80 nm, of which the average size was 53 nm. Additionally, the silver nanoparticles (AgNPs) demonstrated inhibitory activity against Staphylococcus aureus (OR648079), exhibiting a 31 mm zone of inhibition at a minimum inhibitory concentration (MIC) of 4 mg/mL and a minimum bactericidal concentration (MBC) of 8 mg/mL. This was followed by Aspergillus niger (OR648075), which showed a 30 mm inhibition zone at an MIC of 16 mg/mL and a minimum fungicidal concentration (MFC) of 32 mg/mL. Then, Enterococcus faecalis (OR648078), Klebsiella pneumoniae (OR648081), and Acinetobacter baumannii (OR648080) each displayed a 29 mm zone of inhibition at an MIC of 8 mg/mL and an MBC of 16 mg/mL. The least inhibition was observed against Candida auris (OR648076), with a 25 mm inhibition zone at an MIC of 16 mg/mL and an MFC of 32 mg/mL. Furthermore, AgNPs at different concentrations removed DPPH and H2O2 at an IC50 value of 13.54 μg/mL. Also, AgNPs at 3 mg/mL showed remarkable DNA fragmentation in all bacterial strains except Enterococcus faecalis. The phytochemical analysis showed the presence of different active organic components in the plant extract, which concluded that rutin was 88.3 mg/g, garlic acid was 70.4 mg/g, and tannic acid was 23.7 mg/g. Finally, AgNPs concentrations in the range of 3-6 mg/mL showed decreased expression of two of the fundamental genes necessary for biofilm formation within Staphylococcus aureus, fnbA (6 folds), and Cna (12.5 folds) when compared with the RecA gene, which decreased by one-fold when compared with the control sample. These two genes were submitted with NCBI accession numbers [OR682119] and [OR682118], respectively. Conclusions: The findings from this study indicate that biosynthesized AgNPs from Solanum lycopersicum exhibit promising antimicrobial and antioxidant properties against UTI pathogens, including strains resistant to multiple antibiotics. This suggests their potential as an effective alternative treatment for UTIs. Further research is warranted to fully understand the mechanisms of action and to explore the therapeutic applications of these nanoparticles in combating UTIs.
Collapse
Affiliation(s)
- Alsayed E. Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ahmed E. M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Port-Said University, 23 December Street, P.O. Box 42522, Port-Said 42522, Egypt;
| | - Fady Sayed Youssef
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shymaa A. Elaskary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Shibin El-Kom 32511, Egypt
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, El Saleheya El Gadida 44813, Egypt;
| | - Eman A. Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena 83523, Egypt;
| | - Mahmoud Ali Gaber
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Alhadary M. Alsamman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Abdullah Yousef
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Sadat 32897, Egypt;
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Reda A. Suef
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed A Selim
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| | - Mohamed Khedr
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt (A.M.A.); (R.A.S.); (M.A.S.); (E.S.); (M.K.)
| |
Collapse
|
4
|
Marinas IC, Ignat L, Maurușa IE, Gaboreanu MD, Adina C, Popa M, Chifiriuc MC, Angheloiu M, Georgescu M, Iacobescu A, Pircalabioru GG, Stan M, Pinteala M. Insights into the physico-chemical and biological characterization of sodium lignosulfonate - silver nanosystems designed for wound management. Heliyon 2024; 10:e26047. [PMID: 38384565 PMCID: PMC10878957 DOI: 10.1016/j.heliyon.2024.e26047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO3 (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against Pseudomonas aeruginosa and Escherichia coli strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.
Collapse
Affiliation(s)
- Ioana C. Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania
| | - Leonard Ignat
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Ignat E. Maurușa
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Madalina D. Gaboreanu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Coroabă Adina
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Marcela Popa
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Mariana C. Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independentei St., District 5, 50085, Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, Sector 1, District 1, 010071, Bucharest, Romania
| | - Marian Angheloiu
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania
| | - Mihaela Georgescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
| | - Alexandra Iacobescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| |
Collapse
|