1
|
Xie Y, Zhang T, Wang B, Wang W. The Application of Metal-Organic Frameworks in Water Treatment and Their Large-Scale Preparation: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1972. [PMID: 38730779 PMCID: PMC11084628 DOI: 10.3390/ma17091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.
Collapse
Affiliation(s)
- Yuhang Xie
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Wu J, Chen X, Li A, Xing T, Chen G. Preparation of CS-LS/AgNPs Composites and Photocatalytic Degradation of Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1214. [PMID: 38473686 DOI: 10.3390/ma17051214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Synthetic dyes are prone to water pollution during use, jeopardizing biodiversity and human health. This study aimed to investigate the adsorption and photocatalytic assist potential of sodium lignosulfonate (LS) in in situ reduced silver nanoparticles (AgNPs) and chitosan (CS)-loaded silver nanoparticles (CS-LS/AgNPs) as adsorbents for Rhodamine B (RhB). The AgNPs were synthesized by doping LS on the surface of chitosan for modification. Fourier transform infrared (FT-IR) spectrometry, energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to confirm the synthesis of nanomaterials. The adsorption and photocatalytic removal experiments of RhB were carried out under optimal conditions (initial dye concentration of 20 mg/L, adsorbent dosage of 0.02 g, time of 60 min, and UV power of 250 W), and the kinetics of dye degradation was also investigated, which showed that the removal rate of RhB by AgNPs photocatalysis can reach 55%. The results indicated that LS was highly effective as a reducing agent for the large-scale production of metal nanoparticles and can be used for dye decolorization. This work provides a new catalyst for the effective removal of dye from wastewater, and can achieve high-value applications of chitosan and lignin.
Collapse
Affiliation(s)
- Jiabao Wu
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xinpeng Chen
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Aijing Li
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tieling Xing
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guoqiang Chen
- Discharge Reduction and Cleaner Production (ERC), Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|