1
|
Segundo RF, De La Cruz-Noriega M, Luis CC, Otiniano NM, Soto-Deza N, Rojas-Villacorta W, De La Cruz-Cerquin M. Reduction of Toxic Metal Ions and Production of Bioelectricity through Microbial Fuel Cells Using Bacillus marisflavi as a Biocatalyst. Molecules 2024; 29:2725. [PMID: 38930791 PMCID: PMC11205780 DOI: 10.3390/molecules29122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024] Open
Abstract
Industrialization has brought many environmental problems since its expansion, including heavy metal contamination in water used for agricultural irrigation. This research uses microbial fuel cell technology to generate bioelectricity and remove arsenic, copper, and iron, using contaminated agricultural water as a substrate and Bacillus marisflavi as a biocatalyst. The results obtained for electrical potential and current were 0.798 V and 3.519 mA, respectively, on the sixth day of operation and the pH value was 6.54 with an EC equal to 198.72 mS/cm, with a removal of 99.08, 56.08, and 91.39% of the concentrations of As, Cu, and Fe, respectively, obtained in 72 h. Likewise, total nitrogen concentrations, organic carbon, loss on ignition, dissolved organic carbon, and chemical oxygen demand were reduced by 69.047, 86.922, 85.378, 88.458, and 90.771%, respectively. At the same time, the PDMAX shown was 376.20 ± 15.478 mW/cm2, with a calculated internal resistance of 42.550 ± 12.353 Ω. This technique presents an essential advance in overcoming existing technical barriers because the engineered microbial fuel cells are accessible and scalable. It will generate important value by naturally reducing toxic metals and electrical energy, producing electric currents in a sustainable and affordable way.
Collapse
Affiliation(s)
- Rojas-Flores Segundo
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| | - Magaly De La Cruz-Noriega
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| | - Cabanillas-Chirinos Luis
- Investigación Formativa e Integridad Científica, Universidad César Vallejo, Trujillo 13001, Peru; (C.-C.L.); (W.R.-V.)
| | - Nélida Milly Otiniano
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| | - Nancy Soto-Deza
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| | - Walter Rojas-Villacorta
- Investigación Formativa e Integridad Científica, Universidad César Vallejo, Trujillo 13001, Peru; (C.-C.L.); (W.R.-V.)
| | - Mayra De La Cruz-Cerquin
- Instituto de Investigación en Ciencias y Tecnología de la Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (M.D.L.C.-C.)
| |
Collapse
|
2
|
Rojas-Flores S, De La Cruz-Noriega M, Cabanillas-Chirinos L, Otiniano NM, Soto-Deza N, Terrones-Rodriguez N, De La Cruz-Cerquin M. Potential Use of Andean Tuber Waste for the Generation of Environmentally Sustainable Bioelectricity. Molecules 2024; 29:1978. [PMID: 38731469 PMCID: PMC11085406 DOI: 10.3390/molecules29091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The growing demand for agricultural products has increased exponentially, causing their waste to increase and become a problem for society. Searching for sustainable solutions for organic waste management is increasingly urgent. This research focuses on considering the waste of an Andean tuber, such as Olluco, as a fuel source for generating electricity and becoming a potential sustainable energy source for companies dedicated to this area. This research used Olluco waste as fuel in single-chamber microbial fuel cells using carbon and zinc electrodes. An electric current and electric potential of 6.4 ± 0.4 mA and 0.99 ± 0.09 V were generated, operating with an electrical conductivity of 142.3 ± 6.1 mS/cm and a pH of 7.1 ± 0.2. It was possible to obtain a 94% decrease in COD and an internal resistance of 24.9 ± 2.8 Ω. The power density found was 373.8 ± 28.8 mW/cm2 and the current density was 4.96 A/cm2. On day 14, the cells were connected in earnest, achieving a power of 2.92 V and generating enough current to light an LED light bulb, thus demonstrating the potential that Olluco waste has to be used as fuel in microbial fuel cells.
Collapse
Affiliation(s)
- Segundo Rojas-Flores
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Magaly De La Cruz-Noriega
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Luis Cabanillas-Chirinos
- Investigación Formativa e Integridad Científica, Universidad César Vallejo, Trujillo 13001, Peru;
| | - Nélida Milly Otiniano
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Nancy Soto-Deza
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Nicole Terrones-Rodriguez
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Mayra De La Cruz-Cerquin
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| |
Collapse
|
3
|
Ishaq A, Said MIM, Azman SB, Houmsi MR, Isah AS, Jagun ZT, Mohammad SJ, Bello AAD, Abubakar UA. The influence of various chemical oxygen demands on microbial fuel cells performance using leachate as a substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32090-x. [PMID: 38285261 DOI: 10.1007/s11356-024-32090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Microbial fuel cells (MFCs), hailed as a promising technology, hold the potential to combat various wastewater pollutants while simultaneously converting their chemical energy into electricity through biocatalysts. This study explores the applicability of a dual compartment MFC (DC-MFC) under varying conditions, targeting the removal of chemical oxygen demand (COD) from landfill leachate and electricity generation. In this setup, anaerobic sludge from a wastewater treatment plant serves as the inoculum in the anode compartment of the MFC, with a Nafion117 membrane acting as the separator between MFC units. The cathode compartments are filled with distilled water and continually aerated for 24 h to enhance air supply. The study assesses the MFC's performance across different COD concentrations, focusing on COD removal, power generation, and Coulombic efficiency. The findings reveal that COD removal efficiency is notably enhanced at higher concentrations of organic matter. Specifically, at a COD concentration of 3325.0 mg L-1, the MFC exhibited the highest COD removal efficiency (89%) and maximum power density (339.41 mWm-2), accompanied by a Coulombic efficiency of 25.5%. However, as the initial substrate concentration increased to 3825 mg L-1, the efficiency decreased to 72%, with a Coulombic efficiency of 13.56% and a power density of 262.34 mWm-2. Optical density levels increased due to bacterial growth at ambient temperature and neutral pH, reflecting the dynamic microbial response within the system.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water & Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Bahru, Johor, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water & Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Bahru, Johor, Malaysia
| | - Shamila Binti Azman
- Department of Water & Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Bahru, Johor, Malaysia
| | - Mohammed Rajab Houmsi
- New Era and Development in Civil Engineering Research Group, Scientific Research Center, AlAyen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Abubakar Sadiq Isah
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering And Computing, Leeds Beckett University, City Campus, Leeds, UK.
| | - Shamsuddeen Jumande Mohammad
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Al Amin Danladi Bello
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Umar Alfa Abubakar
- School of Engineering, Technology, and Design, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK
| |
Collapse
|