1
|
Hinton TG, Anderson D, Bæk E, Baranwal VC, Beasley JC, Bontrager HL, Broggio D, Brown J, Byrne ME, Gerke HC, Ishiniwa H, Lance SL, Lind OC, Love CN, Nagata H, Nanba K, Okuda K, Salbu B, Shamovich D, Skuterud L, Trompier F, Webster SC, Zabrotski V. Fundamentals of wildlife dosimetry and lessons learned from a decade of measuring external dose rates in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107472. [PMID: 38905881 DOI: 10.1016/j.jenvrad.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Methods for determining the radiation dose received by exposed biota require major improvements to reduce uncertainties and increase precision. We share our experiences in attempting to quantify external dose rates to free-ranging wildlife using GPS-coupled dosimetry methods. The manuscript is a primer on fundamental concepts in wildlife dosimetry in which the complexities of quantifying dose rates are highlighted, and lessons learned are presented based on research with wild boar and snakes at Fukushima, wolves at Chornobyl, and reindeer in Norway. GPS-coupled dosimeters produced empirical data to which numerical simulations of external dose using computer software were compared. Our data did not support a standing paradigm in risk analyses: Using averaged soil contaminant levels to model external dose rates conservatively overestimate the dose to individuals within a population. Following this paradigm will likely lead to misguided recommendations for risk management. The GPS-dosimetry data also demonstrated the critical importance of how modeled external dose rates are impacted by the scale at which contaminants are mapped. When contaminant mapping scales are coarse even detailed knowledge about each animal's home range was inadequate to accurately predict external dose rates. Importantly, modeled external dose rates based on a single measurement at a trap site did not correlate to actual dose rates measured on free ranging animals. These findings provide empirical data to support published concerns about inadequate dosimetry in much of the published Chernobyl and Fukushima dose-effects research. Our data indicate that a huge portion of that literature should be challenged, and that improper dosimetry remains a significant source of controversy in radiation dose-effect research.
Collapse
Affiliation(s)
- Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan; CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori, Japan.
| | - Edda Bæk
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway.
| | | | - James C Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Helen L Bontrager
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - David Broggio
- Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France.
| | - Justin Brown
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway.
| | - Michael E Byrne
- School of Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Hannah C Gerke
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Ole C Lind
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Cara N Love
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Hiroko Nagata
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Kei Okuda
- Faculty of Human Environmental Sciences, Hiroshima Shudo University, Hiroshima, Japan.
| | - Brit Salbu
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | | | | | - François Trompier
- Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France.
| | - Sarah C Webster
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Viachaslau Zabrotski
- Republican Center for Hydrometeorology, Control of Radioactive Contamination and Environmental Monitoring (Belhydromet), Minsk, Belarus.
| |
Collapse
|
2
|
Masterson M, Wood-stott G, Jafari SM, Bradley D. A review of micro silica beads in radiation dosimetry applications. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Koide S, Kawano N, Akatsuka M, Kimura H, Nakauchi D, Okada G, Yanagida T. Photoluminescence, scintillation and thermoluminescent properties of Tb-doped BaCaBO3F. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2021.106563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Iurlaro G, Baranowska Z, Campani L, Bjelac OC, Ferrari P, Knežević Ž, Majer M, Mariotti F, Morelli B, Neumaier S, Nodilo M, Sperandio L, Vittoria F, Wołoszczuk K, Živanovic M. Study on the uncertainty of passive area dosimetry systems for environmental radiation monitoring in the framework of the EMPIR “Preparedness” project. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2021.106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Rhodes OE, Bréchignac F, Bradshaw C, Hinton TG, Mothersill C, Arnone JA, Aubrey DP, Barnthouse LW, Beasley JC, Bonisoli-Alquati A, Boring LR, Bryan AL, Capps KA, Clément B, Coleman A, Condon C, Coutelot F, DeVol T, Dharmarajan G, Fletcher D, Flynn W, Gladfelder G, Glenn TC, Hendricks S, Ishida K, Jannik T, Kapustka L, Kautsky U, Kennamer R, Kuhne W, Lance S, Laptyev G, Love C, Manglass L, Martinez N, Mathews T, McKee A, McShea W, Mihok S, Mills G, Parrott B, Powell B, Pryakhin E, Rypstra A, Scott D, Seaman J, Seymour C, Shkvyria M, Ward A, White D, Wood MD, Zimmerman JK. Integration of ecosystem science into radioecology: A consensus perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140031. [PMID: 32559536 DOI: 10.1016/j.scitotenv.2020.140031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
In the Fall of 2016 a workshop was held which brought together over 50 scientists from the ecological and radiological fields to discuss feasibility and challenges of reintegrating ecosystem science into radioecology. There is a growing desire to incorporate attributes of ecosystem science into radiological risk assessment and radioecological research more generally, fueled by recent advances in quantification of emergent ecosystem attributes and the desire to accurately reflect impacts of radiological stressors upon ecosystem function. This paper is a synthesis of the discussions and consensus of the workshop participant's responses to three primary questions, which were: 1) How can ecosystem science support radiological risk assessment? 2) What ecosystem level endpoints potentially could be used for radiological risk assessment? and 3) What inference strategies and associated methods would be most appropriate to assess the effects of radionuclides on ecosystem structure and function? The consensus of the participants was that ecosystem science can and should support radiological risk assessment through the incorporation of quantitative metrics that reflect ecosystem functions which are sensitive to radiological contaminants. The participants also agreed that many such endpoints exit or are thought to exit and while many are used in ecological risk assessment currently, additional data need to be collected that link the causal mechanisms of radiological exposure to these endpoints. Finally, the participants agreed that radiological risk assessments must be designed and informed by rigorous statistical frameworks capable of revealing the causal inference tying radiological exposure to the endpoints selected for measurement.
Collapse
Affiliation(s)
- Olin E Rhodes
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America.
| | - Francois Bréchignac
- Institut de Radioprotection et de Sûreté Nucléaire, International Union of Radioecology, Center of Cadarache, Bldg 159, BP 1, 13115 St Paul-lez-Durance cedex, France
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima University, Fukushima 960-1296, Japan
| | | | - John A Arnone
- Division of Earth and Ecosystem Sciences Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, United States of America
| | - Doug P Aubrey
- Savannah River Ecology Lab, Warnell School of Forestry and Natural Resources, Drawer E, Aiken, SC 29802, United States of America
| | - Lawrence W Barnthouse
- LWB Environmental Services, Inc., 1620 New London Rd., Hamilton, OH 45013, United States of America
| | - James C Beasley
- Savannah River Ecology Lab, Warnell School of Forestry and Natural Resources, Drawer E, Aiken, SC 29802, United States of America
| | - Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA 91768, United States of America
| | - Lindsay R Boring
- Joseph W. Jones Ecological Research Center, #988 Jones Center Dr., Newton, GA 39870, United States of America
| | - Albert L Bryan
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Krista A Capps
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America; Odum School of Ecology, University of Georgia, Athens, GA 30602, United States of America
| | - Bernard Clément
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, rue Maurice Audin, Vaulx-en-Velin, France
| | - Austin Coleman
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Caitlin Condon
- School of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, OR 97331, United States of America
| | - Fanny Coutelot
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Clemson, SC 29625, United States of America
| | - Timothy DeVol
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Guha Dharmarajan
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Dean Fletcher
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Wes Flynn
- Department of Forestry and Natural Resources, Purdue University, 715 W State Street, West Lafayette, IN 47907, United States of America
| | - Garth Gladfelder
- School of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, OR 97331, United States of America
| | - Travis C Glenn
- Department of Environmental Health Science, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, United States of America
| | - Susan Hendricks
- Hancock Biological Station, 561 Emma Dr., Murray State University, Murray, KY 42071, United States of America
| | - Ken Ishida
- The University of Tokyo, Yokoze, 6632-12, Yokoze-town, Chichibu-gun, 368-0072, Japan
| | - Tim Jannik
- Savannah River National Laboratory, SRS Bldg. 999-W, Room 312, Aiken, SC 29808, United States of America
| | - Larry Kapustka
- LK Consultancy, P.O Box 373, 100 202 Blacklock Way SW, Turner Valley, Alberta T0L 2A0, Canada
| | - Ulrik Kautsky
- Svensk Kärnbränslehantering AB, PO Box 3091, SE-169 03 Solna, Sweden
| | - Robert Kennamer
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Wendy Kuhne
- Savannah River National Laboratory, 735-A, B-102, Aiken, SC 29808, United States of America
| | - Stacey Lance
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Gennadiy Laptyev
- Ukrainian HydroMeteorological Institute, 37 Prospekt Nauki, Kiev 02038, Ukraine
| | - Cara Love
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Lisa Manglass
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Nicole Martinez
- Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Anderson, SC 29625-6510, United States of America
| | - Teresa Mathews
- Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831, United States of America
| | - Arthur McKee
- Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT 59860, United States of America
| | - William McShea
- Smithsonian's Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, United States of America
| | - Steve Mihok
- Canadian Nuclear Safety Commission, P.O. Box 1046, Station B, 280 Slater St., Ottawa, Ontario K1P 5S9, Canada
| | - Gary Mills
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Ben Parrott
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Brian Powell
- Department of Environmental Engineering and Earth Sciences, 342 Computer Ct., Clemson University, Clemson, SC 29625, United States of America; Savannah River National Laboratory, Aiken, SC 29808, United States of America
| | - Evgeny Pryakhin
- Urals Research Center for Radiation Medicine, Vorovsky Str., 68a, Chelyabinsk 454141, Russia
| | - Ann Rypstra
- Ecology Research Center, Miami University, Oxford, OH 45056, United States of America
| | - David Scott
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - John Seaman
- Savannah River Ecology Lab, Drawer E, Aiken, SC 29802, United States of America
| | - Colin Seymour
- Dept. of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Maryna Shkvyria
- Kyiv zoological park of national importance, prosp. Peremohy, 32, Kyiv 04116, Ukraine
| | - Amelia Ward
- Department of Biological Sciences, PO Box 870344, University of Alabama, Tuscaloosa, AL 35487, United States of America
| | - David White
- Hancock Biological Station, 561 Emma Dr., Murray State University, Murray, KY 42071, United States of America
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT. United Kingdom
| | - Jess K Zimmerman
- University of Puerto Rico, #17 Ave Universidad, San Juan 00925, Puerto Rico
| |
Collapse
|
6
|
Mothersill CE, Oughton DH, Schofield PN, Abend M, Adam-Guillermin C, Ariyoshi K, Beresford NA, Bonisoli-Alquati A, Cohen J, Dubrova Y, Geras’kin SA, Hevrøy TH, Higley KA, Horemans N, Jha AN, Kapustka LA, Kiang JG, Madas BG, Powathil G, Sarapultseva EI, Seymour CB, Vo NTK, Wood MD. From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. Int J Radiat Biol 2020; 98:1185-1200. [DOI: 10.1080/09553002.2020.1793022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima City, Japan
| | | | | | - Jason Cohen
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Yuri Dubrova
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed services University of the Health Sciences, Bethesda, MD, USA
| | - Balázs G. Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Gibin Powathil
- Department of Mathematics, Computational Foundry, Swansea University, Swansea, UK
| | | | | | - Nguyen T. K. Vo
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Michael D. Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| |
Collapse
|
7
|
Beresford NA, Horemans N, Copplestone D, Raines KE, Orizaola G, Wood MD, Laanen P, Whitehead HC, Burrows JE, Tinsley MC, Smith JT, Bonzom JM, Gagnaire B, Adam-Guillermin C, Gashchak S, Jha AN, de Menezes A, Willey N, Spurgeon D. Towards solving a scientific controversy - The effects of ionising radiation on the environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106033. [PMID: 31451195 DOI: 10.1016/j.jenvrad.2019.106033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 05/12/2023]
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP, United Kingdom; School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom.
| | - N Horemans
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - K E Raines
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - G Orizaola
- Universidad de Oviedo - Campus de Mieres, Edificio de Investigación 5a Planta, C/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres-Asturias, Spain
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - P Laanen
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium; University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - H C Whitehead
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - J E Burrows
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - M C Tinsley
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - J T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom
| | - J-M Bonzom
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | - B Gagnaire
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | | | - S Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, International Radioecology Laboratory, 77th Gvardiiska Dyviiya Str.11, P.O. Box 151, 07100, Slavutych, Kiev Region, Ukraine
| | - A N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - A de Menezes
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - N Willey
- Centre for Research in Bioscience, Dept. of Applied Sciences, University of the West of England, Frenchay, BS16 1QY, Bristol, United Kingdom
| | - D Spurgeon
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| |
Collapse
|
8
|
Beaugelin-Seiller K, Garnier-Laplace J, Beresford NA. Estimating radiological exposure of wildlife in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105830. [PMID: 30385053 DOI: 10.1016/j.jenvrad.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/31/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
The assessment of the ecological impact due to radionuclides at contaminated sites requires estimation of the exposure of wildlife, in order to correlate radiation dose with known radiological effects. The robust interpretation of field data requires consideration of possible confounding effects (e.g., from the tsunami at Fukushima) and an accurate and relevant quantification of radiation doses to biota. Generally, in field studies the exposure of fauna and flora has often been characterised as measurements of the ambient dose rate or activity concentrations in some components of the environment. The use of such data does not allow the establishment of a robust dose-effect relationship for wildlife exposed to ionising radiation in the field. Effects of exposure to radioactivity depend on the total amount of energy deposited into exposed organisms, which is estimated by adding doses (or dose rates) for all radionuclides and exposure pathways. Realistic dose estimation needs to reflect the entire story of the organisms of interest during their whole exposure period. The process of identifying and collecting all the related information should allow the "W" questions (Which organisms are exposed, Where, When and hoW) to be answered. Some parameters are well known to influence dose (rate): the organism life stage, its ecological characteristics (e.g. habitat, behaviour), the source term properties (e.g. discharging facility, nature of radiation), etc. The closer the collated data are to the ideal data set, the more accurate and realistic the dose (rate) assessment will be. This means characterising each exposure pathway (internal and external), the activity concentration in each exposure source, the time each organism spends in a given place, as well as the associated dose. In this paper the process of data collation in view of dose reconstruction is illustrated for Japanese birds exposed to radioactive deposition following the Fukushima accident. With respect to the Chernobyl Exclusion Zone we will also consider variability under field conditions, availability of relevant datasets and options for better estimating internal and external doses received by wildlife.
Collapse
|
9
|
Beresford NA, Scott EM, Copplestone D. Field effects studies in the Chernobyl Exclusion Zone: Lessons to be learnt. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105893. [PMID: 30718022 DOI: 10.1016/j.jenvrad.2019.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
In the initial aftermath of the 1986 Chernobyl accident there were detrimental effects recorded on wildlife, including, mass mortality of pine trees close to the reactor, reduced pine seed production, reductions in soil invertebrate abundance and diversity and likely death of small mammals. More than 30 years after the Chernobyl accident there is no consensus on the longer-term impact of the chronic exposure to radiation on wildlife in what is now referred to as the Chernobyl Exclusion Zone. Reconciling this lack of consensus is one of the main challenges for radioecology. With the inclusion of environmental protection in, for instance, the recommendations of the International Commission on Radiological Protection (ICRP), we need to be able to incorporate knowledge of the potential effects of radiation on wildlife within the regulatory process (e.g. as a basis on which to define benchmark dose rates). In this paper, we use examples of reported effects on different wildlife groups inhabiting the Chernobyl Exclusion Zone (CEZ) as a framework to discuss potential reasons for the lack of consensus, consider important factors influencing dose rates organisms receive and make some recommendations on good practice.
Collapse
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - E M Scott
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| |
Collapse
|
10
|
Aramrun K, Beresford NA, Skuterud L, Hevrøy TH, Drefvelin J, Bennett K, Yurosko C, Phruksarojanakun P, Esoa J, Yongprawat M, Siegenthaler A, Fawkes R, Tumnoi W, Wood MD. Measuring the radiation exposure of Norwegian reindeer under field conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1337-1343. [PMID: 31412467 DOI: 10.1016/j.scitotenv.2019.06.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Models and approaches have been developed to predict radiation exposure of wildlife under field conditions. However, there have been few attempts to directly measure radiation exposure of wildlife in the field and confirm the doses predicted by models. This is a potential issue for stakeholder acceptance of modelling-based assessments. Here is presented a comprehensive study comparing the results of different dosimeters fitted to free-ranging reindeer inhabiting an area that received comparatively high radiocaesium deposition from the 1986 Chernobyl accident. The external dose of reindeer was measured using the four dosimeter types in aluminium box mounted on the GPS collar. The measurements were compared with two model predictions: (i) external dose to reindeer across the entire range area of the herd; and (ii) external doses of individual reindeer predicted using GPS tracking data to determine locations. It was found that although significant differences between the estimates of the various dosimeters were found these were small with no practical implication. Also, the mean predicted external doses using the GPS tracking data were not significantly different to estimates from two of the four passive dosimeter results. The average external dose predicted across the herd area was significantly lower than doses recorded by the dosimeters and also estimates using GPS data to determine reindeer location (and hence exposure). For 137Cs the average external dose from the GPS tracking data was about twice that predicted across the herd area, because collared animals favoured the more contaminated area of the study site. This suggests that in some circumstances the assumption of averaging contamination over an assumed home range within assessments may be inadequate though this would need to be balanced against other uncertainties. Natural radiation was the greatest contribution to reindeer exposure and a function of the high altitude.
Collapse
Affiliation(s)
- Kitkawin Aramrun
- School of Environment & Life Sciences, Peel Building, University of Salford, Manchester M5 4WT, UK; Office of Atoms for Peace (OAP), 16 Vibravadi Rangsit road, Ladyao, Chatuchak, Bangkok 10900, Thailand.
| | - Nicholas A Beresford
- School of Environment & Life Sciences, Peel Building, University of Salford, Manchester M5 4WT, UK; NERC Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, UK
| | - Lavrans Skuterud
- Norwegian Radiation and Nuclear Safety Authority (DSA), Grini Næringspark 13, 1361 Østerås, Norway
| | - Tanya H Hevrøy
- Norwegian Radiation and Nuclear Safety Authority (DSA), Grini Næringspark 13, 1361 Østerås, Norway
| | - Jon Drefvelin
- Norwegian Radiation and Nuclear Safety Authority (DSA), Grini Næringspark 13, 1361 Østerås, Norway
| | - Kip Bennett
- Mirion Technologies, 2652 McGaw Avenue, Irvine, CA 92614, USA
| | - Craig Yurosko
- Mirion Technologies, 2652 McGaw Avenue, Irvine, CA 92614, USA
| | - Phiphat Phruksarojanakun
- Office of Atoms for Peace (OAP), 16 Vibravadi Rangsit road, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Jeerawa Esoa
- Thailand Institute of Nuclear Technology (TINT), 9/9 Moo 7, Sai Moon, Ongkharak, Nakorn Nayok, 26120, Thailand
| | - Monthon Yongprawat
- Thailand Institute of Nuclear Technology (TINT), 9/9 Moo 7, Sai Moon, Ongkharak, Nakorn Nayok, 26120, Thailand; University of Goettingen, Geoscience Centre of the University of Göttingen, Dept. Applied Geology, Goldschmidtstr. 3, 37077 Göttingen, Germany
| | - Andjin Siegenthaler
- School of Environment & Life Sciences, Peel Building, University of Salford, Manchester M5 4WT, UK
| | - Ross Fawkes
- School of Environment & Life Sciences, Peel Building, University of Salford, Manchester M5 4WT, UK
| | - Wanwiwa Tumnoi
- Faculty of Science, Silpakorn University, Rajamankha Nai, Muang, Nakhon Pathom 73000, Thailand
| | - Michael D Wood
- School of Environment & Life Sciences, Peel Building, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
11
|
|