1
|
Sultan MT, Anwar MJ, Imran M, Khalil I, Saeed F, Neelum S, Alsagaby SA, Al Abdulmonem W, Abdelgawad MA, Hussain M, El-Ghorab AH, Umar M, Al Jbawi E. Phytochemical profile and pro-healthy properties of Terminalia chebula: A comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2166951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Ijaz Khalil
- Institute of Food and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahzadi Neelum
- Department of Biochemistry, Hamdard University, Karachi, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
2
|
Timilsina AP, Raut BK, Huo C, Khadayat K, Budhathoki P, Ghimire M, Budhathoki R, Aryal N, Kim KH, Parajuli N. Metabolomics and molecular networking approach for exploring the anti-diabetic activity of medicinal plants. RSC Adv 2023; 13:30665-30679. [PMID: 37869390 PMCID: PMC10585453 DOI: 10.1039/d3ra04037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolomics and molecular networking approaches have expanded rapidly in the field of biological sciences and involve the systematic identification, visualization, and high-throughput characterization of bioactive metabolites in natural products using sophisticated mass spectrometry-based techniques. The popularity of natural products in pharmaceutical therapies has been influenced by medicinal plants with a long history of ethnobotany and a vast collection of bioactive compounds. Here, we selected four medicinal plants Cleistocalyx operculatus, Terminalia chebula, Ficus lacor, and Ficus semicordata, the biochemical characteristics of which remain unclear owing to the inherent complexity of their plant metabolites. In this study, we aimed to evaluate the potential of these aforementioned plant extracts in inhibiting the enzymatic activity of α-amylase and α-glucosidase, respectively, followed by the annotation of secondary metabolites. The methanol extract of Ficus semicordata exhibited the highest α-amylase inhibition with an IC50 of 46.8 ± 1.8 μg mL-1, whereas the water fraction of Terminalia chebula fruits demonstrated the most significant α-glucosidase inhibition with an IC50 value of 1.07 ± 0.01 μg mL-1. The metabolic profiling of plant extracts was analyzed through Liquid Chromatography-Mass Spectrometry (LC-HRMS) of the active fractions, resulting in the annotation of 32 secondary metabolites. Furthermore, we applied the Global Natural Product Social Molecular Networking (GNPS) platform to evaluate the MS/MS data of Terminalia chebula (bark), revealing that there were 205 and 160 individual ion species observed as nodes in the methanol and ethyl acetate fractions, respectively. Twenty-two metabolites were tentatively identified from the network map, of which 11 compounds were unidentified during manual annotation.
Collapse
Affiliation(s)
- Arjun Prasad Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Bimal Kumar Raut
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Karan Khadayat
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Prakriti Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Mandira Ghimire
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Rabin Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Niraj Aryal
- Department of Biology, University of Florida Gainesville FL 32611 USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| |
Collapse
|
3
|
Randomized Double-Blind Placebo-Controlled Supplementation with Standardized Terminalia chebula Fruit Extracts Reduces Facial Sebum Excretion, Erythema, and Wrinkle Severity. J Clin Med 2023; 12:jcm12041591. [PMID: 36836126 PMCID: PMC9963432 DOI: 10.3390/jcm12041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/30/2022] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
Terminalia chebula (TC) is a medicinal plant that exhibits antioxidant, anti-inflammatory, and antibacterial properties and that is widely used in Ayurveda and herbal formulations. However, the skin effects of TC as an oral supplement have not been studied. The objective of this study is to determine if oral TC fruit extract supplementation can modulate the skin's sebum production and reduce the appearance of wrinkles. A prospective double-blind placebo-controlled study was conducted on healthy females aged 25-65. Subjects were supplemented with an oral placebo or Terminalia chebula (250 mg capsule, Synastol TC) capsules twice daily for eight weeks. A facial image collection and analysis system was used to assess the facial appearance of wrinkle severity. Standardized, non-invasive tools were used to measure facial moisture, sebum production, transepidermal water loss, melanin index and erythema index. For those who had a baseline sebum excretion rate >80 ug/cm2, TC supplementation produced a significant decrease in forehead sebum excretion rate compared to the placebo at four weeks (-17 decrease vs. 20% increase, p = 0.07) and at eight weeks (-33% decrease vs. 29% increase, p < 0.01). Cheek erythema decreased by 2.2% at eight weeks, while the placebo treatment increased cheek erythema by 1.5% (p < 0.05). Facial wrinkles decreased by 4.3% in the TC group and increased by 3.9% in the placebo group after eight weeks of supplementation (p < 0.05). TC supplementation reduces facial sebum and improves the appearance of wrinkles. Future studies should consider evaluating oral TC as adjuvant therapy for acne vulgaris.
Collapse
|
4
|
Terminalia chebula Medicinal Uses: A Review of in vitro and in vivo Studies. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Palanisamy K, Maiyelvaganan KR, Kamalakannan S, Thilagavathi R, Selvam C, Prakash M. In silico screening of potential antiviral inhibitors against SARS-CoV-2 main protease. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - K. Rudharachari Maiyelvaganan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Shanmugasundaram Kamalakannan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
6
|
Hassan Bulbul MR, Uddin Chowdhury MN, Naima TA, Sami SA, Imtiaj MS, Huda N, Uddin MG. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz. Heliyon 2022; 8:e10220. [PMID: 36051270 PMCID: PMC9424961 DOI: 10.1016/j.heliyon.2022.e10220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Terminalia chebula Retz, commonly known as 'Haritaki/Myrobalan,' has been utilised as a traditional medicine for a long time. It has been extensively exercised in various indigenous medicine practices like Unani, Tibb, Ayurveda, and Siddha to remedy human ailments such as bleeding, carminative, dysentery, liver tonic, digestive, antidiarrheal, analgesic, anthelmintic, antibacterial and helpful in skin disorders. Studies on the pharmacological effects of T. chebula and its phytoconstituents documented between January, 1996 and December, 2021 were explored using various electronic databases. During the time mentioned above, several laboratory approaches revealed the biological properties of T. chebula, including antioxidative, antiproliferative, anti-microbial, proapoptotic, anti-diabetic, anti-ageing, hepatoprotective, anti-inflammatory, and antiepileptic. It is also beneficial in glucose and lipid metabolism and prevents atherogenesis and endothelial dysfunction. Different parts of T. chebula such as fruits, seeds, galls, barks extracted with various solvent systems (aqueous, ethanol, methanol, chloroform, ethyl-acetate) revealed major bioactive compounds like chebulic acid, chebulinic acid, and chebulaginic acid, which in turn proved to have valuable pharmacological properties through broad scientific investigations. There is a common link between chebulagic acid and chebulanin with its antioxidant property, antiaging activity, antiinflammatory, antidiabetic activity, and cardioprotective activity. The actions may be through neutralizing the free radicals responsible for producing tissue damage alongside interconnecting many other diseases. The current review summarises the scientifically documented literature on pharmacological potentials and chemical compositions of T. chebula, which is expected to investigate further studies on this subject.
Collapse
Affiliation(s)
| | | | - Taslima Anjum Naima
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md. Shakil Imtiaj
- Department of Chemistry, Government City College, National University, Gazipur, 1708, Bangladesh
| | - Nazmul Huda
- Department of Chemistry, University of Texas at Rio Grande Valley, Edinburg, Texas, 78539, USA
| | - Md. Giash Uddin
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| |
Collapse
|
7
|
Eltimamy M, Elshamarka M, Aboelsaad M, Sayed M, Moawad H. Effects of alcoholic extract of Terminalia Chebula dried fruit on blood biochemical profile in diabetic rats. J Diabetes Metab Disord 2022; 21:159-170. [PMID: 35673508 PMCID: PMC9167356 DOI: 10.1007/s40200-021-00951-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/02/2021] [Indexed: 01/24/2023]
Abstract
Background A considerable amount of attention has been recently paid to the discovery of effective natural antidiabetic drugs. Terminalia chebula is considered as the mother of herbs, with reported antidiabetic activity. This study aims to evaluate the renal and hepatic protective profile of its antidiabetic therapeutic doses. Methods To achieve the aim of the study, a total of 66 adult male rats of Sprague-Dawley species weighing about 180-200 g (weighed using a digital scale) were used. Type 2 diabetes mellitus (T2DM) was induced in using streptozotocin (STZ), rats were given a 5% dextrose solution for the next 24 h. Subjects received oral treatment of Terminalia chebula ethanolic extract at different doses (200, 400, and 600 mg/kg body weight) for 28 days. Measurements of fasting blood glucose level, change in body weight, lipid profile, serum liver enzymes, serum renal parameter, and histopathology of liver and kidney were carried out. Results Higher doses of Terminalia chebula (600 mg/Kg) were shown to have a potential therapeutic effect as well as the most prominent antidiabetic, antilipidemic activity, hepatoprotective and renoprotective profiles when compared to lower doses. Conclusion The use of Terminalia chebula alone or in combination with conventional antidiabetic drugs may be beneficial as a new advent therapy for diabetes. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00951-8.
Collapse
Affiliation(s)
| | - Marwa Elshamarka
- Department of Toxicology and Narcotics, Medical Division, National Research Centre, Damietta, Egypt
| | - Marina Aboelsaad
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, El Shorouk City, Egypt
| | - Moustafa Sayed
- Department of Clinical Pharmacy Practice, Faculty of Pharmacy, The British University in Egypt, El Shorouk City, Egypt
| | - Helmy Moawad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Kieslich D, Christoffers J. The First Total Synthesis of Racemic Chebulic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Kieslich
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Jens Christoffers
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| |
Collapse
|
9
|
Yan LS, Cheng BCY, Zhang SF, Luo G, Zhang C, Wang QG, Fu XQ, Wang YW, Zhang Y. Tibetan Medicine for Diabetes Mellitus: Overview of Pharmacological Perspectives. Front Pharmacol 2021; 12:748500. [PMID: 34744728 PMCID: PMC8566911 DOI: 10.3389/fphar.2021.748500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) and its complications pose a major public health threat which is approaching epidemic proportions globally. Current drug options may not provide good efficacy and even cause serious adverse effects. Seeking safe and effective agents for DM treatment has been an area of intensive interest. As a healing system originating in Tibet, Traditional Tibetan Medicine (TTM) has been widely used by Tibetan people for the prevention and treatment of DM and its complications for hundreds of years. Tibetan Materia Medica (TMM) including the flower of Edgeworthia gardneri (Wall.) Meisn., Phyllanthi Fructus, Chebulae Fructus, Huidouba, and Berberidis Cortex are most frequently used and studied. These TMMs possess hypoglycemic, anti-insulin resistant, anti-glycation, lipid lowering, anti-inflammatory, and anti-oxidative effects. The underlying mechanisms of these actions may be related to their α-glucosidase inhibitory, insulin signaling promoting, PPARs-activating, gut microbiota modulation, islet β cell-preserving, and TNF-α signaling suppressive properties. This review presents a comprehensive overview of the mode and mechanisms of action of various active constituents, extracts, preparations, and formulas from TMM. The dynamic beneficial effects of the products prepared from TMM for the management of DM and its complications are summarized. These TMMs are valuable materia medica which have the potential to be developed as safe and effective anti-DM agents.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong, China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Gao Wang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi, China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Qu J, Yang SZ, Zhu Y, Guo T, Thannickal VJ, Zhou Y. Targeting mechanosensitive MDM4 promotes lung fibrosis resolution in aged mice. J Exp Med 2021; 218:e20202033. [PMID: 33688918 PMCID: PMC7953267 DOI: 10.1084/jem.20202033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is a strong risk factor and an independent prognostic factor for progressive human idiopathic pulmonary fibrosis (IPF). Aged mice develop nonresolving pulmonary fibrosis following lung injury. In this study, we found that mouse double minute 4 homolog (MDM4) is highly expressed in the fibrotic lesions of human IPF and experimental pulmonary fibrosis in aged mice. We identified MDM4 as a matrix stiffness-regulated endogenous inhibitor of p53. Reducing matrix stiffness down-regulates MDM4 expression, resulting in p53 activation in primary lung myofibroblasts isolated from IPF patients. Gain of p53 function activates a gene program that sensitizes lung myofibroblasts to apoptosis and promotes the clearance of apoptotic myofibroblasts by macrophages. Destiffening of the fibrotic lung matrix by targeting nonenzymatic cross-linking or genetic ablation of Mdm4 in lung (myo)fibroblasts activates the Mdm4-p53 pathway and promotes lung fibrosis resolution in aged mice. These findings suggest that mechanosensitive MDM4 is a molecular target with promising therapeutic potential against persistent lung fibrosis associated with aging.
Collapse
Affiliation(s)
- Jing Qu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shan-Zhong Yang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Yi Zhu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ting Guo
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
- The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Victor J. Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
11
|
Pingali U, Sukumaran D, Nutalapati C. Effect of an aqueous extract of Terminalia chebula on endothelial dysfunction, systemic inflammation, and lipid profile in type 2 diabetes mellitus: A randomized double-blind, placebo-controlled clinical study. Phytother Res 2020; 34:3226-3235. [PMID: 32618037 DOI: 10.1002/ptr.6771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 01/10/2023]
Abstract
Endothelial dysfunction is a crucial complication in type 2 diabetic patients, related to cardiovascular risk. Terminalia chebula (TC), a traditional ayurvedic herb, is known for its antioxidant and antihyperlipidemic activity. A prospective, randomized, double-blind, placebo-controlled clinical study was undertaken to evaluate the effects of an aqueous extract of T. chebula 250 and 500 mg versus placebo on endothelial dysfunction and biomarkers of oxidative stress in type 2 diabetic patients. A total of 60 eligible patients were randomized to receive either T. chebula 250 mg, T. chebula 500 mg, or placebo twice daily for 12 weeks. The subjects were assessed based on the endothelial function, the levels of nitric oxide, malondialdehyde, glutathione, high sensitivity C-reactive protein, glycosylated hemoglobin, and lipid profile at baseline and after 12 weeks of treatment. Treatment with T. chebula 250 mg and T. chebula 500 mg for 12 weeks significantly improved the endothelial function (reflection index) compared to placebo (absolute changes: - T. chebula 250: -2.55 ± 1.82% vs. T. chebula 500: -5.21 ± 2.41% vs. placebo: 1.40 ± 2.11%). Other cardiovascular risk indicators were also significantly ameliorated in the treatment groups compared to placebo. In conclusion, T. chebula (especially, 500 mg BID dose) significantly minimized the cardiovascular risk factors in patients with type 2 diabetes compared to placebo.
Collapse
Affiliation(s)
- Usharani Pingali
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Deepasree Sukumaran
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Chandrasekhar Nutalapati
- Department of Clinical Pharmacology & Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|
12
|
Yang ZN, Su BJ, Wang YQ, Liao HB, Chen ZF, Liang D. Isolation, Absolute Configuration, and Biological Activities of Chebulic Acid and Brevifolincarboxylic Acid Derivatives from Euphorbia hirta. JOURNAL OF NATURAL PRODUCTS 2020; 83:985-995. [PMID: 32141299 DOI: 10.1021/acs.jnatprod.9b00877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Twenty new chebulic acid and brevifolincarboxylic acid derivatives, including eight optically pure or achiral compounds (1-7 and 14) and six pairs of enantiomers (8a/8b-13a/13b), along with nine known analogues (15-23), were isolated from an EtOH extract of the aerial parts of Euphorbia hirta. The absolute configurations of the new compounds were assigned based on single-crystal X-ray diffraction analysis and comparison of the experimental and calculated ECD data. Racemic or scalemic mixtures of 8-13 were isolated, and their enantiomers were analyzed by chiral-phase HPLC-ECD measurements. Compound 12 possesses an unprecedented 2H-cyclopenta[de]chromene-2,5(4H)-dione scaffold. Compounds 12, 20, and 23 displayed moderate inhibitory effects against lipopolysaccharide-induced nitric oxide production in BV-2 microglial cells, while all the isolates exhibited significant DPPH radical scavenging activities with EC50 values of 2.2-15.8 μM.
Collapse
Affiliation(s)
- Zi-Ni Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Bao-Jun Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Ya-Qi Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Hai-Bing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
13
|
Nigam M, Mishra AP, Adhikari-Devkota A, Dirar AI, Hassan MM, Adhikari A, Belwal T, Devkota HP. Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytother Res 2020; 34:2518-2533. [PMID: 32307775 DOI: 10.1002/ptr.6702] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 11/12/2022]
Abstract
Fruits of Terminalia chebula Retz. (Combretaceae) are widely used as crude drugs in various traditional medicine systems. The aim of this article is to review the available scientific information regarding the traditional uses, bioactive chemical constituents and the pharmacological activities of T. chebula. Numerous researches conducted on T. chebula have confirmed the presence of wide range of the phytochemicals such as flavonoids, tannins, phenolic acids and other bioactive compounds. T. chebula is also widely studied regarding its pharmacological activities such as antioxidant, hepatoprotective, neuroprotective, cytotoxic, antidiabetic, anti-inflammatory activities among others. However, more in vivo and clinical studies for mechanism-based pharmacological evaluation should be conducted in future to provide stronger scientific evidences for their traditional uses.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | - Abhay P Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Srinagar Garhwal, India
| | | | - Amina Ibrahim Dirar
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Md Mahadi Hassan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Achyut Adhikari
- Central Department of Chemistry, Tribhuwan University, Kritipur, Nepal
| | - Tarun Belwal
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res Int 2020; 130:108933. [DOI: 10.1016/j.foodres.2019.108933] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
|
15
|
Wang W, Liu T, Yang L, Ma Y, Dou F, Shi L, Wen A, Ding Y. Study on the multi-targets mechanism of triphala on cardio-cerebral vascular diseases based on network pharmacology. Biomed Pharmacother 2019; 116:108994. [PMID: 31112872 DOI: 10.1016/j.biopha.2019.108994] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND & AIMS Numerous references made clear that Triphala is revered as a multiuse therapeutic and perhaps even panacea historically. Nevertheless, the protective mechanism of Triphala on cardio-cerebral vascular diseases (CCVDs) remains not comprehensive understanding. Hence, a network pharmacology-based method was suggested in this study to address this problem. METHODS This study was based on network pharmacology and bioinformatics analysis. Information on compounds in herbal medicines of Triphala formula was acquired from public databases. Oral bioavailability as well as drug-likeness were screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Then, components of Triphala, candidate targets of each component and known therapeutic targets of CCVDs were collected. Compound-target gene and compounds-CCVDs target networks were created through network pharmacology data sources. In addition, key targets and pathway enrichment were analyzed by STRING database and DAVID database. Moreover, we verified three of the key targets (PTGS2, MMP9 and IL6) predicted by using western blot analysis. RESULTS Network analysis determined 132 compounds in three herbal medicines that were subjected to ADME screening, and 23 compounds as well as 65 genes formed the principal pathways linked to CCVDs. And 10 compounds, which actually linked to more than three genes, are determined as crucial chemicals. Core genes in this network were IL6, TNF, VEGFA, PTGS2, CXCL8, TP53, CCL2, IL10, MMP9 and SERPINE1. And pathways in cancer, TNF signaling pathway, neuroactive ligand-receptor interaction, etc. related to CCVDs were identified. In vitro experiments, the results indicated that compared with the control group (no treatment), PTGS2, MMP9 and IL6 were up-regulated by treatment of 10 ng/mL TNF-α, while pretreatment with 20-80 μg/mL Triphala could significantly inhibit the expression of PTGS2, MMP9 and IL6. With increasing Triphala concentration, the expression of PTGS2, MMP9 and IL6 decreased. CONCLUSIONS This study revealed the complex components and pharmacological mechanism of Triphala, and obtained some potential therapeutic targets of CCVDs, which could provide theoretical basis for the research and development of new drugs for treating CCVDs.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712000, China
| | - Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Pharmacy, 940 Hospital of PLA Joint Logistics Support Forces, Lanzhou, 730050, China
| | - Liudi Yang
- Department of Acupuncture-moxibustion-massage, Shaanxi University of Chinese Medicine, Xi'an, 712000, China
| | - Yang Ma
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712000, China
| | - Fang Dou
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Shi
- Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, 510000, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, 510000, China.
| |
Collapse
|
16
|
Triphala: current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chin Med 2018; 13:39. [PMID: 30034512 PMCID: PMC6052535 DOI: 10.1186/s13020-018-0197-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Background Ayurvedic medicine is based on natural healing methods that use herbal medicine to cleanse the body of toxins and to attain physical and mental regeneration. Triphala (TLP) is one of the most important ayurvedic supplements and is believed to have a beneficial effect on the entire gastrointestinal (GI) tract. Purpose We aim to summarize available literature focused on the components of TLP (Terminalia chebula, Terminalia bellerica and Phyllanthus emblica) and discusse their effectiveness and therapeutic value for improving lower GI symptoms in functional GI disorders, particularly irritable bowel syndrome (IBS). Methods This study is based on pertinent papers that were retrieved by a selective search using relevant keywords in PubMed and ScienceDirect databases. Results The components of TLP are believed to cause restoration of the epithelium lining of the digestive tract, and by exhibiting mild laxative properties facilitate passage of stool in the colon. TLP is rich in polyphenols, vitamin C and flavonoids, which provide antioxidant and anti-inflammatory effects. It also contains various types of acids, such as gallic, chebulagic and chebulinic, which additionally possess cytoprotective and antifungal properties. Conclusion Triphala holds potential in improving lower GI symptoms and may be a valuable and effective addition to standard treatment of IBS. Supplementation of TLP herbal formulations alone or along with other probiotics can be recommended in ongoing clinical studies.
Collapse
|
17
|
Nam MH, Son WR, Yang SY, Lee YS, Lee KW. Chebulic acid inhibits advanced glycation end products-mediated vascular dysfunction by suppressing ROS via the ERK/Nrf2 pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Thanigaivel A, Vasantha-Srinivasan P, Senthil-Nathan S, Edwin ES, Ponsankar A, Chellappandian M, Selin-Rani S, Lija-Escaline J, Kalaivani K. Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:210-217. [PMID: 27940415 DOI: 10.1016/j.ecoenv.2016.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 05/07/2023]
Abstract
Aedes aegypti Linn is one of the most important mosquito species. The vectors are responsible for causing deadly diseases like dengue and dengue hemorrhagic fever. Several chemical pesticides used to control these dengue vectors caused severe toxic significances on human health and other non-target beneficial insects. Therefore the current investigation has been made to access the bio-efficacy of the crude seed extracts of T. chebula against the dengue vector Ae. aegypti. The GC-MS analysis of crude seed extracts of T. chebula identified nine chemical compounds with major peak area in the 1,2,3-Benzenetriol (61.96%), followed by Tridecanoic acid (09.55%). Ae. aegypti larvae showed dose dependent mortality rate was observed between the treatments. Prominent protection rate at greater concentrations of 100ppm and moderate protection at 75 and 50ppm was observed in the repellent assay. Lethal concentration (LC50 and LC90) of fourth instar larvae of Ae. aegypti was observed in 138 and 220ppm concentration respectively. Similarly, the seed extracts showed 100% adulticidal activity at the concentration of 400ppm at 30min of exposure time. Phytochemicals present in the seed extracts of T. chebula significantly affects the major portions of the midgut tissues of Ae. aegypti at the concentration of 100ppm. The toxicological evaluation of seed extracts also proved non-toxic towards the A. bouvieri and Tx. splendens aquatic predatory insects. Hence, the present result suggest that bio-rational plant derived T. chebula could be incorporated in the dengue vector control and have no adverse effects on non-target beneficial insects.
Collapse
Affiliation(s)
- Annamalai Thanigaivel
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India
| | - Prabhakaran Vasantha-Srinivasan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India.
| | - Edward-Sam Edwin
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India
| | - Athirstam Ponsankar
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India
| | - Muthiah Chellappandian
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India
| | - Selvaraj Selin-Rani
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India
| | - Jalasteen Lija-Escaline
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tirunelveli, Tamil Nadu, India
| | - Kandaswamy Kalaivani
- Post Graduate and Research Centre, Department of Zoology, Sri Parasakthi College for Women, Courtrallam, 627802 Tirunelveli, Tamil Nadu, India
| |
Collapse
|
19
|
Rather RA, Malik VS, Trikha D, Bhat O, Dhawan V. Aqueous Terminalia arjuna extract modulates expression of key atherosclerosis-related proteins in a hypercholesterolemic rabbit: A proteomic-based study. Proteomics Clin Appl 2016; 10:750-759. [PMID: 26934842 DOI: 10.1002/prca.201500114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 07/07/2024]
Abstract
PURPOSE The present study evaluates the effect of an aqueous extract of Terminalia arjuna (aqTAE) on protein expression in aortic plaques of hypercholesterolemic rabbits using a proteomic approach. EXPERIMENTAL DESIGN Thirty male New Zealand rabbits (n = 6) were employed as Gp1 (stock diet); Gp2 (high-fat diet [HFD]); Gp3 (stock diet + aqTAE); Gp4 (HFD + aqTAE); and Gp5 (HFD + atorvastatin) and followed for 6 months. Protein lysates of aortic tissues were separated by 2DE and proteins were identified by MALDI-TOF/MS. RESULTS Serum lipids were found to be significantly increased by an HFD and reduced by aqTAE both at 3 and 6 months (Gp4 vs. Gp2; p < 0.05). Total 79 spots were differentially expressed, among which 60 individual proteins were identified, 31 grouped as atherosclerosis-related proteins and 29 classified as others. aqTAE significantly attenuated the protein expression of tumor necrosis factor α, cyclooxygenase-2, MMP-9, HSP60, ICAM-5, Endothelin-3, Vimentin, Protein S100-A9 besides others. Many of the observed proteins are known to be consistently associated with endothelial dysfunction, inflammation, plaque rupture, and immune imbalance. CONCLUSIONS AND CLINICAL RELEVANCE Strong hypolipidemic effects of aqTAE and attenuation of these signature atherogenic biomarkers using proteomics highlights the fact that aqTAE may be useful in the prevention and management of atherosclerosis.
Collapse
Affiliation(s)
- Riyaz Ahmad Rather
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Vivek Singh Malik
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Dimple Trikha
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Owais Bhat
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh, India
| |
Collapse
|
20
|
Gao J, Ajala OS, Wang CY, Xu HY, Yao JH, Zhang HP, Jukov A, Ma CM. Comparison of pharmacokinetic profiles of Terminalia phenolics after intragastric administration of the aqueous extracts of the fruit of Terminalia chebula and a Mongolian compound medicine-Gurigumu-7. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:300-309. [PMID: 26972503 DOI: 10.1016/j.jep.2016.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried fruit of Terminalia chebula (fructus chebulae) is an important Traditional Medicine used for intestinal and hepatic detoxification. Gurigumu-7 which is made of fructus chebulae and 6 other traditional medicines is one of the most frequently used compound Mongolian and Tibet medicines for liver diseases. Terminalia phenolics are considered as the bioactive constituents of fructus chebulae and consequently of Gurigumu-7. AIM OF THE STUDY To compare the pharmacokinetic profiles of Terminalia phenolics after intragastric administration of the aqueous extracts of fructus chebulae and Gurigumu-7 and to evaluate the possible influence of intestinal bacterial metabolism on these pharmacokinetic profiles. MATERIALS AND METHODS An ultra performance liquid chromatography with triple quadrupole mass spectrometry method was established and validated for simultaneously determining the pharmacokinetic profiles of seven Terminalia phenolics after intragastric administration of pure compounds, fructus chebulae extract, and Gurigumu-7 extract. In vitro rat fecal lysates experiments were carried out to explore the metabolic discrepancy between fructus chebulae and Gurigumu-7. RESULTS Seven Terminalia phenolics were detected in rat plasma after intragastric administration of the aqueous extracts of fructus chebulae and Gurigumu-7. Administration of Gurigumu-7 could promote the absorption and increase the Cmax and AUC values of these phenolic constituents compared to fructus chebulae administration. The fecal lysates studies showed that the Terminalia phenolics in Gurigumu-7 were less rapidly bio-transformed than those in fructus chebulae. This may be a contributing factor to the pharmacokinetic discrepancy between the phenolics in fructus chebulae and Gurigumu-7. CONCLUSION Administration of Gurigumu-7 could increase the absorption of Terminalia phenolics through slowing down the intestinal bacteria metabolism. These results provide, in part, an in vivo rationale for the formulation of the traditional Mongolia / Tibet medicine, Gurigumu-7.
Collapse
Affiliation(s)
- Jie Gao
- College of Life Sciences, Inner Mongolia University, 235 West University Road, Huhhot 010021, PR China.
| | - Olusegun S Ajala
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The University of Lagos, CMUL/LUTH campus, PMB12003 Idiaraba-Surulere, Lagos, Nigeria.
| | - Chun-Ying Wang
- College of Life Sciences, Inner Mongolia University, 235 West University Road, Huhhot 010021, PR China.
| | - Hai-Yan Xu
- College of Life Sciences, Inner Mongolia University, 235 West University Road, Huhhot 010021, PR China.
| | - Jia-Huan Yao
- College of Life Sciences, Inner Mongolia University, 235 West University Road, Huhhot 010021, PR China.
| | - Hai-Peng Zhang
- College of Life Sciences, Inner Mongolia University, 235 West University Road, Huhhot 010021, PR China.
| | - Azzaya Jukov
- College of Life Sciences, Inner Mongolia University, 235 West University Road, Huhhot 010021, PR China.
| | - Chao-Mei Ma
- College of Life Sciences, Inner Mongolia University, 235 West University Road, Huhhot 010021, PR China.
| |
Collapse
|
21
|
Koo YC, Pyo MC, Nam MH, Hong CO, Yang SY, Lee KW. Chebulic acid prevents hepatic fibrosis induced by advanced glycation end-products in LX-2 cell by modulating Nrf2 translocation via ERK pathway. Toxicol In Vitro 2016; 34:8-15. [PMID: 27021876 DOI: 10.1016/j.tiv.2016.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/30/2022]
Abstract
Advanced glycation end-products (AGEs) are formed during normal aging, and at an accelerated rate in metabolic syndrome patients. Nonalcoholic steatohepatitis (NASH) can be caused by the AGEs in plasma, while glyceraldehyde-derived AGEs (glycer-AGEs) are significantly higher in the serum of NASH patients. In this study, we investigated the molecular mechanisms of chebulic acid, isolated from Terminalia chebula Retz., in the inhibition of glycer-AGEs induced production of reactive oxygen species (ROS) and collagen accumulation using the LX-2 cell line. Chebulic acid significantly inhibited the induction of ROS and accumulation of collagen proteins by glycer-AGEs. ERK phosphorylation and total nuclear factor E2-related factor 2 (Nrf2) protein expression were induced by chebulic acid in a dose-dependent manner. Chebulic acid was also found to induce translocation of Nrf2 into the nucleus, which was attenuated by inhibition of ERK phosphorylation through treatment with PD98059. Following translocation of Nrf2, chebulic acid induced the protein expressions of catalytic subunit of γ-glutamylcysteine synthetase and glutathione synthesis. Collagen accumulation was also significantly reduced by chebulic acid treatment. The observed effects of chebulic acid were all inhibited by PD98059 treatment. Taken together, these results suggest that chebulic acid prevents the glycer-AGEs-induced ROS formation of LX-2 cells and collagen accumulation by ERK-phosphorylation-mediated Nrf2 nuclear translocation, which causes upregulation of antioxidant protein production.
Collapse
Affiliation(s)
- Yun-Chang Koo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Mi-Hyun Nam
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Chung-Oui Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Sung-Yong Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
22
|
Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells. Eur J Nutr 2015; 56:949-964. [DOI: 10.1007/s00394-015-1141-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
23
|
Terminalia chebula Fructus Inhibits Migration and Proliferation of Vascular Smooth Muscle Cells and Production of Inflammatory Mediators in RAW 264.7. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:502182. [PMID: 25784946 PMCID: PMC4345257 DOI: 10.1155/2015/502182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/15/2015] [Accepted: 01/27/2015] [Indexed: 01/11/2023]
Abstract
Pathogenesis of atherosclerosis and neointima formation after angioplasty involves vascular smooth muscle cells (VSMCs) migration and proliferation followed by inflammatory responses mediated by recruited macrophages in the neointima. Terminalia chebula is widely used traditional medicine in Asia for its beneficial effects against cancer, diabetes, and bacterial infection. The study was designed to determine whether Terminalia chebula fructus water extract (TFW) suppresses VSMC migration and proliferation and inflammatory mediators production in macrophage (RAW 264.7). Our results showed that TFW possessed strong antioxidative effects in 1,1-diphenyl-2-picryl hydrazyl (DPPH) scavenging and lipid peroxidation assays. In addition, TFW reduced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression in RAW 264.7 cells. Also, TFW inhibited platelet-derived growth factor (PDGF-BB) induced VSMC migration as determined by wound healing and Boyden chamber assays. The antimigratory effect of TFW was due to its inhibitory effect on metalloproteinase-9 (MMP-9) expression, focal adhesion kinase (FAK) activation, and Rho-family of small GTPases (Cdc42 and RhoA) expression in VSMCs. Furthermore, TFW suppressed PDGF-BB induced VSMC proliferation by downregulation of mitogen activated protein kinases (MAPKs) signaling molecules. These results suggest that TFW could be a beneficial resource in the prevention of atherosclerosis.
Collapse
|
24
|
Chinchansure AA, Korwar AM, Kulkarni MJ, Joshi SP. Recent development of plant products with anti-glycation activity: a review. RSC Adv 2015. [DOI: 10.1039/c4ra14211j] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review article summarizes the plant natural products that inhibit glycation at different stages leading to the AGEs formation.
Collapse
Affiliation(s)
| | - Arvind M. Korwar
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| | - Mahesh J. Kulkarni
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| | - Swati P. Joshi
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| |
Collapse
|
25
|
Kadir MF, Bin Sayeed MS, Setu NI, Mostafa A, Mia MMK. Ethnopharmacological survey of medicinal plants used by traditional health practitioners in Thanchi, Bandarban Hill Tracts, Bangladesh. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:495-508. [PMID: 24892834 DOI: 10.1016/j.jep.2014.05.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There is very limited information regarding plants used by traditional healers in Bandarban Hill Tracts (BHT), Bangladesh for treating general as well as complex ailments. Current study provides significant ethnopharmacological information, both qualitative and quantitative on medical plants in BHT. Aim of the study This study aimed to collect, analyze and evaluate the rich ethnopharmacologic knowledge on medicinal plants in Thanchi, BHT and attempted to identify the important species used in traditional medicine. Further analysis was done by comparison of the traditional medicinal use of the plants with the available scientific literature data. MATERIALS AND METHODS The field survey was carried out in a period of several years in Thanchi upazilla of Bandarban districts, Bangladesh. A total of 53 Traditional Health Practitioners (THPs) were interviewed through open-ended and semi structured questionnaire. The collected data were analyzed qualitatively and quantitatively. This ethnomedicinal knowledge was compared against the available scientific literature for reports of related uses and studies of phytochemical compounds responsible for respective ailments. RESULTS A total of 84 species of plants, mostly herbs, belonging to 42 families were identified for the treatment of 70 types of ailments. These ailments were categorized into 16 categories. Leaves were the most frequently used plant parts and juice is the mode of preparation of major portions of the plant species. The most common mode of administration was oral ingestion and topical application. Informant consensus factor (Fic) values of the present study reflected the high agreement in the use of plants in the treatment of digestive system and respiratory system disorders among the informants. Diseases of the digestive system had highest use-reports and 3 species of plants, namely Centella asiatica (L.) Urban. (dysentery), Justicia gendarussa L. (asthma) and Ocimum tenuiflorum L. (coughing) had the highest fidelity level (FL) of 100%. Clerodendrum viscosum Vent., Achyranthes aspera L and Justicia gendarussa L. showed the highest relative importance (RI) value of 1.86. According to use value (UV) the most important species were Ocimum tenuiflorum L. (2.24) and Achyranthes aspera L. (2.15). CONCLUSION Priority should be given for further phytochemical investigation to plants that scored highest FL, Fic, UV or RI values, as such values could be considered as good indicator of prospective plants for discovering new drugs. Since knowledge regarding traditional medicine being vulnerable day by day so traditional medicine in school curricula should be incorporated so that younger people could appreciate its usefulness. Also counseling of THPs and gardening of medicinal plants should be taken into consideration immediately in order to smooth continuance and extension of traditional medical knowledge and practice for ensuring safe and effective therapy.
Collapse
Affiliation(s)
- Mohammad Fahim Kadir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; Department of Pharmacy, University of Asia Pacific, Dhaka 1209, Bangladesh.
| | - Muhammad Shahdaat Bin Sayeed
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; Department of Pharmacy, University of Asia Pacific, Dhaka 1209, Bangladesh
| | - Nurul Islam Setu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Asif Mostafa
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - M M K Mia
- Former Principal Scientific Officer and Consultant, Bangladesh National Herbarium, Bangladesh
| |
Collapse
|
26
|
Lee JY, Oh JG, Kim JS, Lee KW. Effects of chebulic acid on advanced glycation endproducts-induced collagen cross-links. Biol Pharm Bull 2014; 37:1162-7. [PMID: 24759763 DOI: 10.1248/bpb.b14-00034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced glycation end-products (AGEs) have been implicated in the development of diabetic complications. We report the antiglycating activity of chebulic acid (CA), isolated from Terminalia chebula on breaking the cross-links of proteins induced by AGEs and inhibiting the formation of AGEs. Aminoguanidine (AG) reduced 50% of glycated bovine serum albumin (BSA) with glycolaldehyde (glycol-BSA)-induced cross-links of collagen at a concentration of 67.8 ± 2.5 mM, the level of CA required for exerting a similar antiglycating activity was 38.8 ± 0.5 µM. Also, the breaking activity on collagen cross-links induced by glycol-BSA was potent with CA (IC50=1.46 ± 0.05 mM), exhibiting 50-fold stronger breaking activity than with ALT-711, a well-known cross-link breaker (IC50=72.2 ± 2.4 mM). IC50 values of DPPH· scavenging activity for CA and ascorbic acid (AA) were 39.2 ± 4.9 and 19.0 ± 1.2 µg dry matter (DM) mL(-1), respectively, and ferric reducing and antioxidant power (FRAP) activities for CA and AA were 4.70 ± 0.06 and 11.4 ± 0.1 mmol/FeSO4·7H2O/g DM, respectively. The chelating activities of CA, AG and ALT711 on copper-catalyzed oxidation of AA were compared, and in increasing order, ALT-711 (IC50 of 1.92 ± 0.20 mM)<CA (IC50 of 0.96 ± 0.07 mM)<AG (0.47 ± 0.05 mM). Thus, CA could be a breaker as well as an inhibitor of AGE cross-linking, the activity of which may be explained in large part by its chelating and antioxidant activities, suggesting that CA may constitute a promising antiglycating candidate in intervening AGE-mediated diabetic complications.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Food Bioscience and Technology, College of Life Science & Biotechnology, Korea University
| | | | | | | |
Collapse
|
27
|
Inhibitory effect of yellow myrobalan (Terminalia chebula) extract on fibrosis induced by carbon tetrachloride in rat liver. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0158-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
28
|
Bag A, Bhattacharyya SK, Chattopadhyay RR. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac J Trop Biomed 2013; 3:244-52. [PMID: 23620847 PMCID: PMC3631759 DOI: 10.1016/s2221-1691(13)60059-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 01/08/2023] Open
Abstract
Medicinal plants are part and parcel of human society to combat diseases from the dawn of civilization. Terminalia chebula Retz. (Fam. Combretaceae), is called the 'King of Medicine' in Tibet and is always listed at the top of the list of 'Ayurvedic Materia Medica' because of its extraordinary power of healing. The whole plant possesses high medicinal value and traditionally used for the treatment of various ailments for human beings. Some of the folklore people used this plant in the treatment of asthma, sore throat, vomiting, hiccough, diarrhea, dysentery, bleeding piles, ulcers, gout, heart and bladder diseases. The plant has been demonstrated to possess multiple pharmacological and medicinal activities, such as antioxidant, antimicrobial, antidiabetic, hepatoprotective, anti-inflammatory, antimutagenic, antiproliferative, radioprotective, cardioprotective, antiarthritic, anticaries, gastrointestinal motility and wound healing activity. But no systematic updated information on the therapeutic effectiveness of Terminalia chebula, a popular herbal remedy in India and South-East Asia has so far been reported. This review highlights an updated information particularly on the phytochemistry and various pharmacological and medicinal properties of Terminalia chebula Retz. and some of its isolated compounds, along with their safety evaluation. This may provide incentive for proper evaluation of the plant as medicinal agent against the human diseases and also to bridge the lacunae in the existing literature and future scope which may offer immense opportunity for researchers engaged in validation of the traditional claims and development of safe and effective botanical medicine.
Collapse
Affiliation(s)
| | | | - Rabi Ranjan Chattopadhyay
- *Corresponding author: Rabi Ranjan Chattopadhyay, Agricultural and Ecological Research Unit, Indian Statistical Institute 203, Barrackpore Trunk Road Kolkata-700 108, India. Tel: +91-33-2575 3275 Fax: +91-33-2577 3049 E-mail: ;
| |
Collapse
|
29
|
Silawat N, Gupta VB. Chebulic acid attenuates ischemia reperfusion induced biochemical alteration in diabetic rats. PHARMACEUTICAL BIOLOGY 2013; 51:23-29. [PMID: 22963650 DOI: 10.3109/13880209.2012.698288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Diabetic nephropathy is one of the important microvascular complications of diabetes; however, the main problem remains is the control of progression of nephropathy in diabetes. Chebulic acid was selected, as tannins from Terminalia chebula are used as antidiabetic, renoprotective, antioxidant, hypotensive and an α-glucosidase inhibitor. OBJECTIVE In this study, we evaluated the effect of chebulic acid on ischemia reperfusion induced biochemical alteration in diabetic rats. MATERIALS AND METHODS Chebulic acid (CA) was isolated from T. chebula; LD(50) and acute toxicity studies of CA were done. Renal ischemia and reperfusion technique was used to induce nephropathy in diabetic rats. Glibenclamide (10 mg/kg) was used as diabetic standard; CA at doses of 25 and 50 mg/kg were administered for 28 days and various biochemical parameters were monitored. RESULTS The LD(50) was found to be 251 mg/kg; 25 and 50 mg/kg doses were selected as no toxic symptoms were observed at both doses, except slight diarrhea. CA significantly (p < 0.001) reduced the glucose, creatinine, urea nitrogen, glycosylated hemoglobulin, proteinuria, urine albumin excretion, glomerular filtration rate (GFR), and increased serum insulin and glycogen level. CA also restored glucose 6-phosphate dehydrogenase, glutathione, superoxide dismutase, catalase and malondialdehyde levels. Improvement in kidney was also noted in histopathological studies. CONCLUSIONS The statistical data indicated that chebulic acid at both doses (25 and 50 mg/kg) improves biochemical alterations caused by renal ischemia in diabetic rats.
Collapse
Affiliation(s)
- Narendra Silawat
- Faculty of Pharmaceutical Sciences, Jodhpur National University, Jodhpur, India.
| | | |
Collapse
|
30
|
Kadir MF, Bin Sayeed MS, Mia MMK. Ethnopharmacological survey of medicinal plants used by indigenous and tribal people in Rangamati, Bangladesh. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:627-37. [PMID: 23064284 DOI: 10.1016/j.jep.2012.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There is very limited information regarding plants used by traditional healers in Rangamati, Bangladesh, for treating general ailments. Current study provides significant ethnopharmacological information, both qualitative and quantitative on medical plants in Rangamati. AIM OF THE STUDY This study aimed to collect, analyze and evaluate the rich ethnopharmacologic knowledge on medicinal plants in Rangamati and attempted to identify the important species used in traditional medicine. Further analysis was done by comparison of the traditional medicinal use with the available scientific literature data. MATERIALS AND METHODS The field survey was carried out in a period of about one year in Rangamati, Bangladesh. A total of 152 people were interviewed, including Traditional Health Practitioners (THPs) and indigenous people through open-ended and semistructured questionnaire. The collected data were analyzed qualitatively and quantitatively. This ethnomedicinal knowledge was compared against the literature for reports of related uses and studies of phytochemical compounds responsible for respective ailments. RESULTS A total of 144 species of plants, mostly trees, belonging to 52 families were identified for the treatment of more than 90 types of ailments. These ailments were categorized into 25 categories. Leaves were the most frequently used plant parts and decoction is the mode of preparation of major portions of the plant species. The most common mode of administration was oral ingestion and topical application. Informant consensus factor (Fic) values of the present study reflected the high agreement in the use of plants in the treatment of gastro-intestinal complaints and respiratory problems among the informants. Gastro-intestinal complaint had highest use-reports and 3 species of plants, namely Aegle marmelos (L.) Corr., Ananas comosus (L.) Merr., and Terminalia chebula (Gaertn.) Retz., had the highest fidelity level (FL) of 100%. Asparagus racemosus Willd. and Azadirachta indica A. Juss. showed the highest relative importance (RI) value of 1.86. According to use value (UV) the most important species were Azadirachta indica A. Juss. (2.48) and Ocimum sanctum L. (2.45). CONCLUSION As a result of the present study, we recommend giving priority for further phytochemical investigation to plants that scored highest FL, Fic, UV or RI values, as such values could be considered as good indicator of prospective plants for discovering new drugs. Also counseling of THPs should be taken into consideration in order to smooth continuation and extension of traditional medical knowledge and practice for ensuring safe and effective therapy.
Collapse
Affiliation(s)
- Mohammad Fahim Kadir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | | | | |
Collapse
|
31
|
Kim JH, Hong CO, Koo YC, Kim SJ, Lee KW. Oral administration of ethyl acetate-soluble portion of Terminalia chebula conferring protection from streptozotocin-induced diabetic mellitus and its complications. Biol Pharm Bull 2012; 34:1702-9. [PMID: 22040883 DOI: 10.1248/bpb.34.1702] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminalia chebula has been widely used in India as a folk medicine. This study investigated the in vivo anti-hyperglycemia and anti-diabetic complication effects of the EtOAc-soluble portion of ethanolic extract of T. chebula fruit (EETC) containing 29.4% chebulic acid. Rats were divided into non-diabetic, untreated diabetic and diabetic groups. Streptozotocin (40 mg/kg body weight (BW))-induced diabetic rats were orally administered the aminoguanidine (100 mg/kg BW), high dose (500 mg/kg BW; HEETC) and low dose (100 mg/kg BW; LEETC) for 13 weeks. HEETC administration reduced the levels of blood glucose and serum lipids, decreased malondialdehyde concentrations of serum and thoracic aorta in diabetic rats, and significantly improved serum biochemical values and the pathomorphological changes of the liver and kidney in diabetic rats. Also, HEETC decreased the advanced glycation end products (AGEs) distribution in testis seminiferous tubules. Therefore, HEETC has a merit to be a potent candidate to control glycemic and diabetic complications.
Collapse
Affiliation(s)
- Ji-hoon Kim
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Kim JH, Koo YC, Hong CO, Yang SY, Jun W, Lee KW. Mutagenicity and oral toxicity studies of Terminalia chebula. Phytother Res 2011; 26:39-47. [PMID: 21538627 DOI: 10.1002/ptr.3504] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 02/01/2023]
Abstract
The fruit of Terminalia chebula Retz. (T. chebula), which is a member of the Combfreetaceae family, is used widely in Asian countries as a traditional folk medicine, and its extract has been reported to be an anticancer, antidiabetic and anticaries agent. In our previous study, chebulic acid isolated from T. chebula extract was confirmed to show antioxidant activity and protective action against endothelial cell dysfunction. In order to support the safety-in-use of the ethyl acetate (EtOAc)-soluble portion of a T. chebula ethanol extract containing 29.4% chebulic acid content, the prepared portion was tested in an in vitro mutagenicity assay, and a single- and 14-day repeated dose oral toxicity study. In the bacterial mutation assay, up to 5000 µg/mL concentration of the EtOAc-soluble portion, the numbers of colonies did not increase whether with or without metabolic activation. In the oral toxicity study, the single oral dose of the extract at 2000 mg/kg did not produce mortality or abnormal lesions in the internal organs of rats. The results of a 14-day orally repeated dose showed that the EtOAc-soluble portion of T. chebula ethanol extracts gave no adverse effects at dosages of 2000 mg/kg in rats in the study.
Collapse
Affiliation(s)
- Ji-hoon Kim
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|