1
|
Zhang H, Xia Y, Cui JL, Ji X, Miao SM, Zhang G, Li YM. The composition characteristics of endophytic communities and their relationship with metabolites profile in Ephedra sinica under wild and cultivated conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95648-95659. [PMID: 37556062 DOI: 10.1007/s11356-023-29145-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023]
Abstract
Ephedra sinica is one of the most famous Chinese medicinal plants. The insufficient supply of wild resources has led to the increased use of cultivated products. However, the related medicinal quality differs significantly. Although the influence of external environment on the quality of E. sinica has been studied, the impact of endophytic microbes on it remains vague. This study characterized differential metabolites and microbial community compositions in wild and cultivated E. sinica by combining metabolomics with microbiomics, and explored the effect of endophytes on the formation of differential metabolites further. The results showed that the difference in quality between wild and cultivated E. sinica was mainly in the productions of alkaloids, flavonoids, and terpenoids. The associated endophytes had special compositional characteristics. For instance, the distribution and abundance of dominant endophytes varied between wild and cultivated E. sinica. Several endophytes had significant or highly significant correlations with the formations of ephedrine, pseudoephedrine, D-cathinone, methcathinone, coumarin, kaempferol, rhamnetin, or phenylacetic acid. This study will deepen our understanding of the plant-endophyte interactions and provide a strategy for the quality control of E. sinica products.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Ye Xia
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| | - Xin Ji
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Shuang-Man Miao
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Gang Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yi-Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
2
|
Fu YP, Li CY, Peng X, Zou YF, Rise F, Paulsen BS, Wangensteen H, Inngjerdingen KT. Polysaccharides from Aconitum carmichaelii leaves: Structure, immunomodulatory and anti-inflammatory activities. Carbohydr Polym 2022; 291:119655. [DOI: 10.1016/j.carbpol.2022.119655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
3
|
Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohydr Polym 2018; 193:212-220. [DOI: 10.1016/j.carbpol.2018.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 11/19/2022]
|
4
|
Aremu AO, Moyo M, Amoo SO, Van Staden J. Ethnobotany, therapeutic value, phytochemistry and conservation status of Bowiea volubilis: A widely used bulbous plant in southern Africa. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:308-316. [PMID: 26277489 DOI: 10.1016/j.jep.2015.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bowiea volubilis Harv. ex Hook.f. (Family: Asparagaceae) is a bulbous medicinal plant widely used against numerous ailments including headache, muscular pains, infertility, cystitis and venereal diseases in southern Africa. AIM OF THE REVIEW To provide a critical and updated review of Bowiea volubilis with regards to its abundance, medicinal importance, conservation status and potential means to sustain its availability for future generations. METHODS A comprehensive literature search using online databases such as Web of Science, Google Scholar, Scopus and Springerlink as well as ethnobotanical literature was done in order to obtain, collate, synthesize and critically analyze available information on Bowiea volubilis. RESULTS On the basis of its wide distribution in many Provinces in South Africa, Bowiea volubilis has a long history of applications among the different ethnic groups. These applications include its uses as purgatives and for the treatment or relief of microbial infections, skin disorders, pains and inflammation. Scientific validation of its diverse uses in traditional medicine has been demonstrated via antimicrobial, anti-inflammatory and toxicity assays. Available results indicate a general poor antimicrobial activity especially with the bulb extracts while the anti-inflammatory activity appears promising. Phytochemical screenings revealed that Bowiea volubilis contains cardiac glycosides and related compounds while reports of other classes of compounds are unavailable. In line with its usage in traditional medicine, the majority of available studies on the species have focused on the use of different solvent extracts from the bulbs. The destructive harvesting of bulbs has led to a continuous decimation of wild populations. Consequently, there are increasing conservational concerns on the sustainability of this species for continuous supply to meet escalating demands. CONCLUSIONS Bowiea volubilis remains a widely used medicinal plant and available but limited scientific evidence indicates its anti-inflammatory potential. The abundance of cardiac glycosides in its phytochemical composition provides an indication on the therapeutic potential. More research efforts including the application of different biotechnological techniques are still required in order to guarantee its sustainable use over time.
Collapse
Affiliation(s)
- Adeyemi O Aremu
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Mack Moyo
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Stephen O Amoo
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa; Agricultural Research Council, Roodeplaat Vegetable and Ornamental Plant Institute, Private Bag X293, Pretoria 0001, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
5
|
Vernonia kotschyana roots: therapeutic potential via antioxidant activity. Molecules 2014; 19:19114-36. [PMID: 25415475 PMCID: PMC6271907 DOI: 10.3390/molecules191119114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 01/27/2023] Open
Abstract
The roots of Vernonia kotschyana Sch. Bip. ex Walp. (Asteraceae) are used in Malian traditional medicine in the treatment of gastroduodenal ulcers and gastritis. Since oxidative stress is involved in gastric ulceration, the aim of this study was to screen the root extracts for their in vitro antioxidant activity and phenolic content. The roots were extracted successively with chloroform, ethyl acetate, ethanol and water. The antioxidant activity of root extracts was evaluated in both cell-free and cell-based assays. Their chemical characterization was performed by Fourier transform infrared spectroscopy (FT-IR) whereas the total phenolic content was determined by the Folin-Ciocalteu method. The ethyl acetate extract displayed the highest phenolic content and was found to be the most active in the free radical scavenging and lipid peroxidation inhibition assays; it also showed a high antioxidant activity in MCF-12F cells. This study suggests a potential use of the ethyl acetate extract of Vernonia kotschyana not only as an antioxidant agent in gastroduodenal ulcers and gastritis, but also in other disorders characterized by high levels of oxidative stress.
Collapse
|
6
|
Košťálová Z, Hromádková Z, Paulsen Berit S, Ebringerová A. Bioactive hemicelluloses alkali-extracted from Fallopia sachalinensis leaves. Carbohydr Res 2014; 398:19-24. [DOI: 10.1016/j.carres.2014.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/01/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
|
7
|
Zou YF, Zhang BZ, Inngjerdingen KT, Barsett H, Diallo D, Michaelsen TE, Paulsen BS. Complement activity of polysaccharides from three different plant parts of Terminalia macroptera extracted as healers do. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:672-678. [PMID: 24933222 DOI: 10.1016/j.jep.2014.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Water decoctions of the root bark, stem bark and leaves of Terminalia macroptera are used by traditional healers in Mali to cure a wide range of illnesses, such as wounds, hepatitis, malaria, fever, cough and diarrhea as well as tuberculosis. Plant polysaccharides isolated from crude water extracts have previously shown effects related to the immune system. The aims of this study are comparing the properties of the polysaccharides among different plant parts, as well as relationship between chemical characteristics and complement fixation activities when the plant material has been extracted as the traditional healers do, with boiling water directly. MATERIALS AND METHODS Root bark, stem bark and leaves of Terminalia macroptera were extracted by boiling water, and five purified polysaccharide fractions were obtained by anion exchange chromatography and gel filtration. Chemical compositions were determined by GC of the TMS derivatives of the methyl-glycosides and the linkage determined after permethylation and GC-MS of the derived partly methylated alditol acetates. The bioactivity was determined by the complement fixation assay of the crude extracts and purified fractions. RESULTS The acidic fraction TRBD-I-I isolated from the root bark was the most active of the fractions isolated. Structural studies showed that all purified fractions are of pectic nature, containing rhamnogalacturonan type I backbone. Arabinogalactan type II side chains were present in all fractions except TRBD-I-II. The observed differences in complement fixation activities among the five purified polysaccharide fractions are probably due to differences in monosaccharide compositions, linkage types and molecular sizes. CONCLUSION The crude extracts from root bark and stem bark have similar total activities, both higher than those from leaves. The root bark, leaves and stem bark are all good sources for fractions containing bioactive polysaccharides. But due to sustainability, it is prefer to use leaves rather than the other two plant parts, and then the dosage by weight must be higher when using leaves.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Bing-Zhao Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway; GIAT-HKU joint Center for Synthetic Biology Engineering Research (CSynBER), Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Nansha, Guangzhou 511458, PR China
| | - Kari Tvete Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Hilde Barsett
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Drissa Diallo
- Department of Traditional Medicine, BP 1746, Bamako, Mali
| | - Terje Einar Michaelsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Berit Smestad Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
8
|
Zou YF, Zhang BZ, Barsett H, Inngjerdingen KT, Diallo D, Michaelsen TE, Paulsen BS. Complement fixing polysaccharides from Terminalia macroptera root bark, stem bark and leaves. Molecules 2014; 19:7440-58. [PMID: 24914893 PMCID: PMC6270672 DOI: 10.3390/molecules19067440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/26/2022] Open
Abstract
The root bark, stem bark and leaves of Terminalia macroptera were sequentially extracted with ethanol, 50% ethanol-water, and 50 °C and 100 °C water using an accelerated solvent extractor. Ten bioactive purified polysaccharide fractions were obtained from those crude extracts after anion exchange chromatography and gel filtration. The polysaccharides and their native extracts were characterized with respect to molecular weight, chemical compositions and effects in the complement assay. The chemical compositions showed that the polysaccharides are of pectic nature. The results indicated that there was no great difference of the complement fixation activities in the crude extracts from the different plant parts when extracting with the accelerated solvent extraction system. The purified polysaccharide fractions 100WTSBH-I-I and 100WTRBH-I-I isolated from the 100 °C water extracts of stem and root bark respectively, showed the highest complement fixation activities. These two fractions have rhamnogalacturonan type I backbone, but only 100WTSBH-I-I contains side chains of both arabinogalactan type I and II. Based on the yield and activities of the fractions studied those from the root bark gave highest results, followed by those from leaves and stem bark. But in total, all plant materials are good sources for fractions containing bioactive polysaccharides.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway.
| | - Bing-Zhao Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Hilde Barsett
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Drissa Diallo
- Department of Traditional Medicine, BP 1746, Bamako, Mali
| | - Terje Einar Michaelsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Berit Smestad Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P. O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
9
|
Inngjerdingen KT, Thöle C, Diallo D, Paulsen BS, Hensel A. Inhibition of Helicobacter pylori adhesion to human gastric adenocarcinoma epithelial cells by aqueous extracts and pectic polysaccharides from the roots of Cochlospermum tinctorium A. Rich. and Vernonia kotschyana Sch. Bip. ex Walp. Fitoterapia 2014; 95:127-32. [DOI: 10.1016/j.fitote.2014.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 02/08/2023]
|
10
|
Zhang BZ, Inngjerdingen KT, Zou YF, Rise F, Michaelsen TE, Yan PS, Paulsen BS. Characterisation and immunomodulating activities of exo-polysaccharides from submerged cultivation of Hypsizigus marmoreus. Food Chem 2014; 163:120-8. [PMID: 24912706 DOI: 10.1016/j.foodchem.2014.04.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/16/2014] [Accepted: 04/24/2014] [Indexed: 11/24/2022]
Abstract
Exo-polysaccharides were purified and characterized from the fermentation broth of Hypsizigus marmoreus, a popular edible mushroom consumed in Asia. Among them, B-I-I and B-II-I exhibited potent complement fixating activity, meanwhile, B-N-I, B-I-I, B-II-I and B-II-II exhibited significant macrophage stimulating activity. Molecular weights of the four exo-polysaccharides were determined to be 6.3, 120, 150 and 11 kDa respectively. Molecular characterisation showed that B-N-I is basically an α-1→4 glucan, with branches on C6; B-I-I is a heavily branched α-mannan with 1→2 linked main chain. B-II-I and B-II-II, have a backbone of rhamno-galacturonan with 1→2 linked l-rhamnose interspersed with 1→4 linked galacturonic acid. Structure-activity relationship analysis indicated that monosaccharide compositions, molecular weight, certain structural units (rhamno-galacturonan type I and arabinogalactan type II) are the principal factors responsible for potent complement fixating and macrophage-stimulating activities. Their immunomodulating activities may, at least partly, explain the health benefits of the mushroom.
Collapse
Affiliation(s)
- Bing-Zhao Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai Campus, 264209 Weihai, China; Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway; Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, 511458 Nansha, Guangzhou, China
| | - Kari T Inngjerdingen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Yuan-Feng Zou
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Terje E Michaelsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway; Department of Bacteriology and Immunology, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403 Oslo, Norway
| | - Pei-Sheng Yan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai Campus, 264209 Weihai, China.
| | - Berit S Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316 Oslo, Norway
| |
Collapse
|
11
|
Immunoregulatory effects of Taishan Pinus massoniana pollen polysaccharide on chicks co-infected with avian leukosis virus and Bordetella avium early in ovo. Res Vet Sci 2014; 96:260-6. [DOI: 10.1016/j.rvsc.2013.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/29/2022]
|
12
|
Fadavi G, Mohammadifar MA, Zargarran A, Mortazavian AM, Komeili R. Composition and physicochemical properties of Zedo gum exudates from Amygdalus scoparia. Carbohydr Polym 2014; 101:1074-80. [DOI: 10.1016/j.carbpol.2013.09.095] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
|
13
|
Zou YF, Zhang BZ, Inngjerdingen KT, Barsett H, Diallo D, Michaelsen TE, El-zoubair E, Paulsen BS. Polysaccharides with immunomodulating properties from the bark of Parkia biglobosa. Carbohydr Polym 2014; 101:457-63. [DOI: 10.1016/j.carbpol.2013.09.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/08/2013] [Accepted: 09/21/2013] [Indexed: 11/30/2022]
|
14
|
Le Normand M, Mélida H, Holmbom B, Michaelsen TE, Inngjerdingen M, Bulone V, Paulsen BS, Ek M. Hot-water extracts from the inner bark of Norway spruce with immunomodulating activities. Carbohydr Polym 2013; 101:699-704. [PMID: 24299828 DOI: 10.1016/j.carbpol.2013.09.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/28/2022]
Abstract
The inner bark of Norway spruce (Picea abies) was sequentially extracted with hot water at 100°C, 140°C and 160°C. The hot-water extracts (IB 100°C, IB 140°C and IB 160°C) contained pectic polysaccharides and showed immunostimulating activities. Structural analyses of their carbohydrate content, including glycosidic linkage analyses, revealed the presence of pectins with a large rhamnogalacturonan RG-I domain ramified with highly-branched arabinans. IB 100°C also contained a large amount of terminal glucosyl residues, indicating the presence of highly substituted polymers. IB 160°C was mainly composed of starch. The hot-water extracts were tested for two biological activities, namely complement fixation and macrophage stimulation. IB 100°C exhibited the highest complement fixation activity, with a 1.7-times higher ICH50 than the control pectin, while IB 140°C and IB 160°C gave similar ICH50 values as the control. Macrophages were stimulated by IB 100°C and IB 140°C in a dose-dependent manner, but not by IB 160°C. IB 100°C presented the highest activity toward macrophages, comparable to the control pectin.
Collapse
Affiliation(s)
- Myriam Le Normand
- Division of Wood Chemistry and Pulp Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|