1
|
Wang D, Zhu L, Liu H, Feng X, Zhang C, Li T, Liu B, Liu L, Sun J, Chang H, Chen S, Guo S, Yang W. Huangqin tang alleviates colitis-associated colorectal cancer via amino acids homeostasisand PI3K/AKT/mtor pathway modulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118597. [PMID: 39034016 DOI: 10.1016/j.jep.2024.118597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqin Tang (HQT), a traditional Chinese medicine formula, is commonly used in clinical practice for the treatment of inflammatory bowel diseases. It has been reported that HQT exerts antitumor effects on colitis-associated colorectal cancer (CAC). However, the mechanism by which HQT interferes with the inflammation-to-cancer transformation remains unclear. AIMS OF THE STUDY The purpose of this study was to dynamically evaluate the efficacy of HQT in alleviating or delaying CAC and to reveal the underlying mechanism. METHODS We established a mouse model of CAC using azoxymethane combined with 1.5% dextran sodium sulphate. The efficacy of HQT was evaluated based on pathological sections and serum biochemical indices. Subsequently, amino acids (AAs) metabolism analyses were performed using ultra-performance liquid chromatography-tandem mass spectrometry, and the phosphatidylinositol 3 kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway was detected by western blotting. RESULTS The data demonstrated that HQT could alleviate the development of CAC in the animal model. HQT effectively reduced the inflammatory response, particularly interleukin-6 (IL-6), in the inflammation induction stage, as well as in the stages of proliferation initiation and tumorigenesis. During the proliferation initiation and tumorigenesis stages, immunohistochemistry staining showed that the expression of the proliferation marker Ki67 was reduced, while apoptosis was increased in the HQT group. Accordingly, HQT substantially decreased the levels of specific AAs in the colon with CAC, including glutamic acid, glutamine, arginine, and isoleucine. Furthermore, HQT significantly inhibited the activated PI3K/AKT/mTOR pathway, which may contribute to suppression of cell proliferation and enhancement of apoptosis. CONCLUSION HQT is effective in alleviating and delaying the colon "inflammation-to-cancer". The mechanism of action may involve HQT maintained AAs metabolism homeostasis and regulated PI3K/AKT/mTOR pathway, so as to maintain the balance between proliferation and apoptosis, and then interfere in the occurrence and development of CAC.
Collapse
Affiliation(s)
- Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hao Chang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Siyuan Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
4
|
Cao Z, Wang W, Yang Z, Liu Y, Sun L, Zhang L, Li Z. Discovery of the FXR/CES2 dual modulator LE-77 for the treatment of irinotecan-induced delayed diarrhea. Bioorg Chem 2024; 153:107852. [PMID: 39362081 DOI: 10.1016/j.bioorg.2024.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Irinotecan (CPT-11) is a widely utilized topoisomerase I inhibitor in the treatment of colorectal cancer and other malignant tumors. However, severe and even life-threatening dose-limiting toxicity-delayed diarrhea affects the clinical application of CPT-11. The standard treatment for CPT-11-induced delayed diarrhea is prompt use of loperamide (LPA), however LPA can also cause constipation, diarrhea and even intestinal obstruction and has a high failure rate. Carboxylesterase 2 (CES2) is the main enzyme in the intestinal transformation of CPT-11, which can convert CPT-11 into toxic metabolite SN-38 and produce intestinal toxicity. Inhibiting CES2 activity can block the hydrolysis process of CPT-11 in the intestine and reduce SN-38 accumulation. Additionally, Farnesoid X receptor (FXR) agonists have anti-inflammatory, anti-secretory, and protective functions on intestinal barrier integrity that could potentially alleviate diarrhea. In this study, we investigated for the first time the anti-delayed diarrhea effect of FXR agonists, and the first time identified LE-77 as a potent dual modulator that activates FXR and inhibits CES2 through high-throughput screening. In the CPT-11-induced delayed diarrhea model, LE-77 demonstrated a dual modulator mechanism by activating FXR and inhibiting CES2, thereby reducing the accumulation of SN-38 in the intestine, alleviating intestinal inflammation, preserving intestinal mucosal integrity, and ultimately alleviating delayed diarrhea.
Collapse
Affiliation(s)
- Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Zhou H, Hu D, Zhao X, Qin S, Nong Q, Tian Y, Zhang Z, Dong H, Zhang P, Xu F. An optimal combination of four active components in Huangqin decoction for the synergistic sensitization of irinotecan against colorectal cancer. Chin Med 2024; 19:94. [PMID: 38956673 PMCID: PMC11218176 DOI: 10.1186/s13020-024-00967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Irinotecan (CPT-11) is a first-line treatment for advanced colorectal cancer (CRC). Four components (baicalin, baicalein, wogonin, and glycyrrhizic acid) derived from Huangqin Decoction (HQD) have been proven to enhance the anticancer activity of CPT-11 in our previous study. OBJECTIVE This study aimed to determine the optimal combination of the four components for sensitizing CPT-11 as well as to explore the underlying mechanism. METHODS The orthogonal design method was applied to obtain candidate combinations (Cmb1-9) of the four components. The influence of different combinations on the anticancer effect of CPT-11 was first evaluated in vitro by cell viability, wound healing ability, cloning formation, apoptosis, and cell cycle arrest. Then, a CRC xenograft mice model was constructed to evaluate the anticancer effect of the optimal combination in vivo. Potential mechanisms of the optimal combination exerting a sensitization effect combined with CPT-11 against CRC were analyzed by targeted metabolomics. RESULTS In vitro experiments determined that Cmb8 comprised of baicalin, baicalein, wogonin, and glycyrrhizic acid at the concentrations of 17 μM, 47 μM, 46.5 μM and 9.8 μM respectively was the most effective combination. Importantly, the cell viability assay showed that Cmb8 exhibited synergistic anticancer activity in combination with CPT-11. In in vivo experiments, this combination (15 mg/kg of baicalin, 24 mg/kg of baicalein, 24 mg/kg of wogonin, and 15 mg/kg of glycyrrhizic acid) also showed a synergistic anticancer effect. Meanwhile, inflammatory factors and pathological examination of the colon showed that Cmb8 could alleviate the gastrointestinal damage induced by CPT-11. Metabolic profiling of the tumors suggested that the synergistic anticancer effect of Cmb8 might be related to the regulation of fatty acid metabolism. CONCLUSION The optimal combination of four components derived from HQD for the synergistic sensitization of CPT-11 against CRC was identified.
Collapse
Affiliation(s)
- Hongyan Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Dingxin Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xian Zhao
- Department of Pharmacy, China Pharmaceutical University, Nanjing Drum Tower Hospital, Nanjing, 210008, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, People's Republic of China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Qiyao Nong
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yuan Tian
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
6
|
Jia Q, Zhou Y, Song L, Shi X, Jiang X, Tao R, Wang A, Wu Y, Wei Z, Zhang Y, Li X, Lu Y. Baicalin reduces chronic stress-induced breast cancer metastasis via directly targeting β2-adrenergic receptor. J Pharm Anal 2024; 14:100934. [PMID: 39139999 PMCID: PMC11321295 DOI: 10.1016/j.jpha.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 08/15/2024] Open
Abstract
Recent studies have shown that stress can substantially facilitate breast cancer metastasis, which can be reduced by nonselective β1/β2-adrenergic receptor (β1/β2-AR) blocker. However, several side effects were identified. Thus, it is extremely warranted to explore more effective and better-tolerated β2-AR blocker. Currently, we demonstrated that baicalin (BA), a major bioactive component of Scutellaria baicalensis Georgi, could significantly attenuate stress hormones especially epinephrine (Epi)-induced breast cancer cell migration and invasion in vitro. Mechanistically, we identified that β2-AR was a direct target of BA via the drug affinity responsive target stability (DARTS) combined with mass spectrum assay, and BA photoaffinity probe with pull-down assay, which was further confirmed by a couple of biophysical and biochemical assays. Furthermore, we demonstrated that BA could directly bind to the Phe-193 and Phe-289 of β2-AR, subsequently inhibit cyclic adenosine monophosphate-protein kinase A-focal adhesion kinase (cAMP-PKA-FAK) pathway, and thus impede epithelial-mesenchymal transition (EMT), thereby hindering the metastatic progression of the chronic stress coupled with syngeneic and xenograft in vivo orthotopic and tail vein mouse model. These findings firstly identify BA as a potential β2-AR inhibitor in the treatment of stress-induced breast cancer metastasis.
Collapse
Affiliation(s)
- Qi Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yinyin Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ximeng Shi
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
7
|
Yang CW, Liu HM, Chang ZY, Liu GH, Chang HH, Huang PY, Lee TY. Puerarin Modulates Hepatic Farnesoid X Receptor and Gut Microbiota in High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2024; 25:5274. [PMID: 38791314 PMCID: PMC11121391 DOI: 10.3390/ijms25105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.
Collapse
MESH Headings
- Animals
- Isoflavones/pharmacology
- Gastrointestinal Microbiome/drug effects
- Diet, High-Fat/adverse effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Mice
- Obesity/metabolism
- Obesity/drug therapy
- Liver/metabolism
- Liver/drug effects
- Male
- Dysbiosis
- Mice, Obese
- Mice, Inbred C57BL
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Cholesterol 7-alpha-Hydroxylase/genetics
- Mice, Knockout
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Organic Anion Transporters, Sodium-Dependent/genetics
- Symporters/metabolism
- Symporters/genetics
- Lipid Metabolism/drug effects
- Hepatocytes/metabolism
- Hepatocytes/drug effects
- Akkermansia
Collapse
Affiliation(s)
- Ching-Wei Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Internal and Pediatric Chinese Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou 333423, Taiwan
| | - Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Geng-Hao Liu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan 333008, Taiwan
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Po-Yu Huang
- Department of Chinese Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10844, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| |
Collapse
|
8
|
Chai Y, Liu JL, Zhang S, Li N, Xu DQ, Liu WJ, Fu RJ, Tang YP. The effective combination therapies with irinotecan for colorectal cancer. Front Pharmacol 2024; 15:1356708. [PMID: 38375031 PMCID: PMC10875015 DOI: 10.3389/fphar.2024.1356708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer is the third most common type of cancer worldwide and has become one of the major human disease burdens. In clinical practice, the treatment of colorectal cancer has been closely related to the use of irinotecan. Irinotecan combines with many other anticancer drugs and has a broader range of drug combinations. Combination therapy is one of the most important means of improving anti-tumor efficacy and overcoming drug resistance. Reasonable combination therapy can lead to better patient treatment options, and inappropriate combination therapy will increase patient risk. For the colorectal therapeutic field, the significance of combination therapy is to improve the efficacy, reduce the adverse effects, and improve the ease of treatment. Therefore, we explored the clinical advantages of its combination therapy based on mechanism or metabolism and reviewed the rationale basis and its limitations in conducting exploratory clinical trials on irinotecan combination therapy, including the results of clinical trials on the combination potentiation of cytotoxic drugs, targeted agents, and herbal medicine. We hope that these can evoke more efforts to conduct irinotecan in the laboratory for further studies and evaluations, as well as the possibility of more in-depth development in future clinical trials.
Collapse
Affiliation(s)
- Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jing-Li Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Shuo Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
9
|
Ma MY, Niu XJ, Wang Q, Wang SM, Li X, Zhang SH. Evidence and possible mechanism of Scutellaria baicalensis and its bioactive compounds for hepatocellular carcinoma treatment. Ann Med 2024; 55:2247004. [PMID: 38232757 PMCID: PMC10795786 DOI: 10.1080/07853890.2023.2247004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Traditional Chinese medicines have been reported to have outstanding effects in the treating of hepatocellular carcinoma. Scutellaria baicalensis (S. baicalensis) has demonstrated anti-tumor, anti-angiogenic, and anti-inflammatory properties. Baicalein, wogonin, and baicalin are the main pharmacologically bioactive compounds of S. baicalensis. METHODS Eight electronic databases were searched to select articles published from their inception to 30 May 2022. For selected articles, clinical and preclinical data was obtained on the use of S. baicalensis and its bioactive compounds in hepatocellular carcinoma therapy. Statistical analyses were performed using RevMan version 5.3 and Stata software. Quality assessment of the studies was performed using Cochrane and Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE)'s risk of bias tools. RESULTS Seven clinical and 17 preclinical in vivo studies along with 31 in vitro studies were included in this research. Meta-analysis showed that a Chinese herbal medicine preparation, with S. baicalensis as the sovereign herb, combined with Transcatheter arterial chemoembolization (TACE) or primary treatment, could lead to a significantly improved tumor objective response rate (Risk ratio (RR) = 1.57, 95% confidence interval (CI): [1.30, 1.90], p < 0.00001). Scutellaria baicalensis-based extracts (standard mean difference (SMD) = -0.86, 95%CI: [-1.20, -0.53], p < 0.00001), baicalein (SMD = -4.80, 95%CI: [-6.66, - 2.95], p < 0.00001), baicalin (SMD = -2.28, 95%CI [-3.26, -1.30], p < 0.00001) and wogonin (SMD = -1.41, 95%CI [-2.26, -0.57], p < 0.00001) slowed tumor growth in vivo. These outcomes might be linked to the mechanism by which S. baicalensis promotes apoptosis, induces autophagy, and blocks the expression of vascular endothelial growth factor (p < 0.05). CONCLUSION Based on experimental and clinical evidence, we believe that S. baicalensis and its bioactive compounds have therapeutic potential and plausible mechanisms of action against hepatocellular carcinoma, in terms of efficacy and safety.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Ji Niu
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shou-Mei Wang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Hui Zhang
- Department of Pathology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Tarasiuk A, Mirocha G, Fichna J. Current status of Complementary and Alternative Medicine Interventions in the Management of Pancreatic Cancer - An Overview. Curr Treat Options Oncol 2023; 24:1852-1869. [PMID: 38079061 PMCID: PMC10781793 DOI: 10.1007/s11864-023-01146-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 01/11/2024]
Abstract
OPINION STATEMENT Pancreatic cancer (PC) remains the deadliest cancer worldwide. Most patients are diagnosed at the advanced or metastatic stage, leading to a poor prognosis. Awareness of the limitations of current therapy and accompanying pain, depression, malnutrition, and side effects of chemoradiotherapy may lead patients and physicians towards complementary and alternative medicine (CAM). CAM refers to a diverse set of medical and healthcare practices, products, and systems that are not part of conventional Western medicine. Despite the low-quality evidence supporting the efficacy of these methods, they remain appealing due to patients' beliefs, fear of death, and the slow development of conventional therapy. Hence, the possibility of using natural products for pancreatic cancer is increasing. CAM options such as: medical cannabis, plants, fungi, herbal formulas, and injections, which originate primarily from traditional Chinese or Japanese medicine i.e. Curcuma longa, Panax ginseng, Poria cocos, Hochuekkito, Juzentaihoto, and Rikkunshito, Shi-quan-da-bu-tang/TJ-48, Huang-qin-tang, Shuangbai San, Wen Jing Zhi Tong Fang, Xiang-Sha-Liu-jun-zi-tang, Aidi injection, Brucea javanica oil emulsion/Yadanziyouru injection, Compound Kushen injection, Huachansu injection, Kangai injection and Kanglaite injections are becoming promising candidates for the management of pancreatic cancer. The abovementioned substances/medications are the most popular or potentially effective in PC treatment and consequently CAM-based adjuvant therapy through improving patients' quality of life, might be a useful addition in the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| | - Grzegorz Mirocha
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| |
Collapse
|
11
|
Yan BF, Pan LF, Quan YF, Sha Q, Zhang JZ, Zhang YF, Zhou LB, Qian XL, Gu XM, Li FT, Wang T, Liu J, Zheng X. Huangqin decoction alleviates lipid metabolism disorders and insulin resistance in nonalcoholic fatty liver disease by triggering Sirt1/NF-κB pathway. World J Gastroenterol 2023; 29:4744-4762. [PMID: 37664157 PMCID: PMC10473922 DOI: 10.3748/wjg.v29.i31.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological entity characterized by intrahepatic ectopic steatosis. As a consequence of increased consumption of high-calorie diet and adoption of a sedentary lifestyle, the incidence of NAFLD has surpassed that of viral hepatitis, making it the most common cause of chronic liver disease globally. Huangqin decoction (HQD), a Chinese medicinal formulation that has been used clinically for thousands of years, has beneficial outcomes in patients with liver diseases, including NAFLD. However, the role and mechanism of action of HQD in lipid metabolism disorders and insulin resistance in NAFLD remain poorly understood. AIM To evaluate the ameliorative effects of HQD in NAFLD, with a focus on lipid metabolism and insulin resistance, and to elucidate the underlying mechanism of action. METHODS High-fat diet-induced NAFLD rats and palmitic acid (PA)-stimulated HepG2 cells were used to investigate the effects of HQD and identify its potential mechanism of action. Phytochemicals in HQD were analyzed by high-performance liquid chromatography (HPLC) to identify the key components. RESULTS Ten primary chemical components of HQD were identified by HPLC analysis. In vivo, HQD effectively prevented rats from gaining body and liver weight, improved the liver index, ameliorated hepatic histological aberrations, decreased transaminase and lipid profile disorders, and reduced the levels of pro-inflammatory factors and insulin resistance. In vitro studies revealed that HQD effectively alleviated PA-induced lipid accumulation, inflammation, and insulin resistance in HepG2 cells. In-depth investigation revealed that HQD triggers Sirt1/NF-κB pathway-modulated lipogenesis and inflammation, contributing to its beneficial actions, which was further corroborated by the addition of the Sirt1 antagonist EX-527 that compromised the favorable effects of HQD. CONCLUSION In summary, our study confirmed that HQD mitigates lipid metabolism disorders and insulin resistance in NAFLD by triggering the Sirt1/NF-κB pathway.
Collapse
Affiliation(s)
- Bao-Fei Yan
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Lan-Fen Pan
- Department of Pathology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Yi-Fang Quan
- Department of Education and Science, The First People's Hospital of Taicang, Kunshan 215400, Jiangsu Province, China
| | - Qian Sha
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Jing-Zheng Zhang
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Yi-Feng Zhang
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Li-Bing Zhou
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Xi-Long Qian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xiao-Mei Gu
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Feng-Tao Li
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Ting Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Jia Liu
- College of Pharmacy, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu Province, China
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan 215300, Jiangsu Province, China
| |
Collapse
|
12
|
Li MY, Wu YZ, Qiu JG, Lei JX, Li MX, Xu N, Liu YH, Jin Z, Su ZR, Lee SMY, Zheng XB, Xiao-Qi H. Huangqin Decoction ameliorates ulcerative colitis by regulating fatty acid metabolism to mediate macrophage polarization via activating FFAR4-AMPK-PPARα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116430. [PMID: 36997133 DOI: 10.1016/j.jep.2023.116430] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqin Decoction (HQD), a traditional Chinese medicine (TCM) formula chronicled in Shang Han Lun, is safe and effective for treatment of ulcerative colitis (UC). AIM OF THE STUDY To investigate the effect of HQD against dextran sulfate sodium (DSS)-induced UC mice by regulating gut microbiota and metabolites, and further explore the mechanism of fatty acid metabolism on macrophage polarization. MATERIALS AND METHODS Based on 3% dextran sulfate sodium (DSS)-induced UC mice model, clinical symptoms observation (body weight, DAI, and colon length) and histological inspection were used to evaluate the efficacy of HQD and fecal microbiota transplantation (FMT) from HQD-treated mice. The gut microbiota and metabolites were detected by 16S rRNA sequencing and metabolomics analysis. The parameters of fatty acid metabolism, macrophage polarization, and FFAR1/FFAR4-AMPK-PPARα pathway were analyzed by immunofluorescence analysis, western blotting, and real-time PCR. Then, the effects of FFAR1 and FFAR4 on macrophage polarization were examined by agonists based on LPS-induced RAW264.7 cell model. RESULTS The results showed that FMT, like HQD, ameliorated UC by improving weight loss, restoring colon length, and reducing DAI scores and histopathological scores. Besides, HQD and FMT both enhanced the richness of gut microbiota, and modulated intestinal bacteria and metabolites to achieve a new balance. Untargeted metabolomics analysis revealed that fatty acids, especially long-chain fatty acids (LCFAs), dominated in HQD against DSS-induced UC by regulating the gut microenvironment. Further, FMT and HQD recovered the expression of fatty acid metabolism-related enzymes, and simultaneously activated FFAR1/FFAR4-AMPK-PPARα pathway but suppressed NF-κB pathway. Combined with cell experiment, HQD and FMT promoted macrophage polarization from M1 toward M2, which were well associated with anti-inflammatory cytokines and combined with the activated FFAR4. CONCLUSIONS The mechanism of HQD against UC was related to regulating fatty acid metabolism to mediate M2 macrophage polarization by activating the FFAR4-AMPK-PPARα pathway.
Collapse
Affiliation(s)
- Min-Yao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Yu-Zhu Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Jian-Guo Qiu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Jun-Xuan Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Mu-Xia Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu-Hong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen Jin
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao
| | - Xue-Bao Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China.
| | - Huang Xiao-Qi
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China.
| |
Collapse
|
13
|
Ialongo D, Tudino V, Arpacioglu M, Messore A, Patacchini E, Costi R, Di Santo R, Madia VN. Synergistic Effects of Caffeine in Combination with Conventional Drugs: Perspectives of a Drug That Never Ages. Pharmaceuticals (Basel) 2023; 16:ph16050730. [PMID: 37242514 DOI: 10.3390/ph16050730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Plants have been known since ancient times for their healing properties, being used as preparations against human diseases of different etiologies. More recently, natural products have been studied and characterized, isolating the phytochemicals responsible for their bioactivity. Most certainly, there are currently numerous active compounds extracted from plants and used as drugs, dietary supplements, or sources of bioactive molecules that are useful in modern drug discovery. Furthermore, phytotherapeutics can modulate the clinical effects of co-administered conventional drugs. In the last few decades, the interest has increased even more in studying the positive synergistic effects between plant-derived bioactives and conventional drugs. Indeed, synergism is a process where multiple compounds act together to exert a merged effect that is greater than that of each of them summed together. The synergistic effects between phytotherapeutics and conventional drugs have been described in different therapeutic areas, and many drugs are based on synergistic interactions with plant derivatives. Among them, caffeine has shown positive synergistic effects with different conventional drugs. Indeed, in addition to their multiple pharmacological activities, a growing body of evidence highlights the synergistic effects of caffeine with different conventional drugs in various therapeutic fields. This review aims to provide an overview of the synergistic therapeutic effects of caffeine and conventional drugs, summarizing the progress reported to date.
Collapse
Affiliation(s)
- Davide Ialongo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Merve Arpacioglu
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Elisa Patacchini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
14
|
Dogan Z, Kutluay VM, Genc Y, Saracoglu I. Interactions between phenolic constituents of Scutellaria salviifolia and key targets associated with inflammation: network pharmacology, molecular docking analysis and in vitro assays. J Biomol Struct Dyn 2023; 41:1281-1294. [PMID: 34939529 DOI: 10.1080/07391102.2021.2019119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Scutellaria salviifolia Benth. (SS), an endemic plant for Turkey, is used for gastric ailments as folk medicine. In this study, we aimed to uncover the underlying molecular mechanisms with the help of network pharmacology and molecular docking analysis in the inflammation processes of gastric ailments. Gene enrichment analysis and target screening were carried out. Experimental validation was performed via cytokines of nitric oxide (NO) and interleukin-6 (IL-6) in LPS stimulated RAW 264.7 cells. Furthermore, antioxidant activity studies were performed by radical scavenging effects on different radicals. A total of 144 targets were listed for the isolated compounds where 26 of them were related to selected inflammation targets. According to the gene enrichment analysis, HIF1 signaling pathway and TNF signaling pathway were found to be involved in inflammation. We also defined AKT1, TNF, EGFR, and COX2 as key targets due to the protein-protein interactions of 26 common targets. The extract inhibited NO and IL-6 production at 100 and 200 µg/mL, while flavonoid-rich fraction possessed significant anti-inflammatory activity at the concentration of 50 and 100 µg/mL via NO and IL-6 production, respectively. It is thought that the anti-inflammatory effects of extracts, fractions and pure compounds were achieved by reducing NO and IL-6 levels via regulating the NF-κB pathway or reducing NO production by suppressing iNOS through the HIF-1 pathway when evaluated together with the results of network analysis and literature. Anti-inflammatory activities of the extract and fractions were promising and comparably with S. baicalensis, commonly used for its anti-inflammatory activity.
Collapse
Affiliation(s)
- Zeynep Dogan
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Vahap Murat Kutluay
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Yasin Genc
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Iclal Saracoglu
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| |
Collapse
|
15
|
Yan BF, Wang Y, Wang WB, Ding XJ, Wei B, Liu SJ, Fu TM, Chen L, Zhang JZ, Liu J, Zheng X. Huangqin decoction mitigates hepatic inflammation in high-fat diet-challenged rats by inhibiting TLR4/NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115999. [PMID: 36509260 DOI: 10.1016/j.jep.2022.115999] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic hepatopathy worldwide, in which ectopic steatosis (5%) and inflammatory infiltration in the liver are the principal clinical characteristics. Huangqin decoction (HQD), a Chinese medicine formula used in the clinic for thousands of years, presents appreciable anti-inflammatory effects. Nevertheless, the role and mechanism of HQD against inflammation in NAFLD are still undefined. AIM OF THE STUDY The objective of this study was to evaluate the curative efficacy and unravel the involved mechanism of HQD on a high-fat diet (HFD)-induced NAFLD. MATERIALS AND METHODS First, HPLC was utilized to analyze the main chemical components of HQD. Then, NAFLD model was introduced by subjecting the rats to HFD for 16 weeks, and HQD (400 and 800 mg/kg) or polyene lecithin choline (PLC, 8 mg/kg) was given orally from week 8-16. Pharmacodynamic indicators including body weight, liver weight, liver index, as well as biochemical and histological parameters were assessed. As to mechanism exploration, the expressions of TLR4/NF-κB/NLRP3 pathway and molecular docking between major phytochemicals of HQD and key targets of TLR4/NF-κB/NLRP3 pathway were investigated. RESULTS Seven main monomeric constituents of HQD were revealed by HPLC analysis. Of note, HQD could effectively attenuate the body weight, liver weight, and liver index, rescue disorders in serum transaminases and lipid profile, correct hepatic histological abnormalities, and reduce phagocytes infiltration into the liver and pro-inflammatory cytokines release in NAFLD rats. Mechanism investigation discovered that HQD harbored inhibitory effects on TLR4/NF-κB/NLRP3 pathway-regulated liver inflammation. Further exploration found that seven phytochemicals in HQD exhibited better binding modes with TLR4/NF-κB/NLRP3 pathway, in which baicalein, baicalin and liquiritin presented the highest affinity and docking score for protein TLR4, NF-κB, and NLRP3, respectively. CONCLUSIONS These findings confirmed that HQD ameliorated hepatic inflammation in NAFLD rats by blocking the TLR4/NF-κB/NLRP3 pathway, with multi-components and multi-targets action pattern.
Collapse
Affiliation(s)
- Bao-Fei Yan
- Jiangsu Health Vocational College, Nanjing, 211800, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yun Wang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, the Second People's Hospital of Huai'an, Huai'an, 223002, PR China
| | - Wen-Bo Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Xiao-Jun Ding
- Department of Otolaryngology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Bin Wei
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Sheng-Jin Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ting-Ming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ling Chen
- Jiangsu Health Vocational College, Nanjing, 211800, PR China
| | | | - Jia Liu
- Jiangsu Health Vocational College, Nanjing, 211800, PR China.
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China.
| |
Collapse
|
16
|
Lam W, Hu R, Liu SH, Cheng P, Cheng YC. YIV-906 enhances nuclear factor of activated T-cells (NFAT) activity of T cells and promotes immune checkpoint blockade antibody action and CAR T-cell activity. Front Pharmacol 2023; 13:1095186. [PMID: 36686648 PMCID: PMC9846171 DOI: 10.3389/fphar.2022.1095186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
YIV-906 is a systems biology botanical cancer drug, inspired by a traditional Chinese herbal formulation. Results from eight Phase I/II to II clinical studies demonstrated the potential of YIV-906 to prolong survival and improve the quality of life of cancer patients. As an immunomodulator in the tumor microenvironment, YIV-906 can turn cold tumors hot and potentiate anti-tumor activity for different classes of anticancer agents; and as a cytoprotector in the GI, YIV-906 can reduce non-hematological side effects and speed up damaged tissue recovery. YIV-906 enhanced anti-PD1 action against hepatoma in mice by stimulating both innate and adaptive immunity. In a Jurkat cell-staphylococcal superantigen E (SEE)-Raji cell culture model, YIV-906 promoted T cell activation with upregulation of CD69 by enhancing NFAT activity, with or without PD1-PD-L1 interaction. YIV-906 could trigger the phosphorylation of TCR downstream signaling cascades without the involvement of TCR. YIV-906 could inhibit SHP1 and SHP2 activities, which dephosphorylates TCR downstream proteins due to the PD1-PD-L1 interaction. Therefore, YIV-906 could enhance anti-PD1 action to rescue the depressed NFAT activity of Jurkat cells due to the PD1-PD-L1 interaction. In addition, YIV-906 enhanced the NFAT activity and killing capability of Jurkat cells expressing chimeric antigen receptor (CAR-CD19-CD3z) toward CD19 expressing cells, such as Raji cells, with or without PD1-PD-L1 overexpression. Ingredient herb S (Scutellaria baicalensis Georgi) of YIV-906 and some S compounds were found to play key roles in these activities. In conclusion, YIV-906 modulates adaptive immunity by activating T effector cells mainly through its action on SHP1/2. YIV-906 could also facilitate immune checkpoint blockade therapy or CAR-T cell therapy for cancer treatment.
Collapse
Affiliation(s)
- Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CN, United States
| | - Rong Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CN, United States
| | | | | | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CN, United States,*Correspondence: Yung-Chi Cheng,
| |
Collapse
|
17
|
Youn BY, Kim JH, Jo YK, Yoon S, Im JY, Kim HJ, Lee JD, Ko SG. Current Characteristics of Herbal Medicine Interventions for Cancer on Clinical Databases: A Cross-Sectional Study. Integr Cancer Ther 2023; 22:15347354231218255. [PMID: 38099482 PMCID: PMC10725141 DOI: 10.1177/15347354231218255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 09/09/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The utilization of herbal medicine has been noteworthy for treating cancer; however, there is not enough information regarding the characteristics of clinical trials of herbal medicine interventions. This study aimed to evaluate the characteristic of registered trials using herbal medicine interventions for cancer. METHODS A cross-sectional study was performed via the website ClinicalTrials.gov, ISRCTN registry, Chinese clinical trial registry, and international clinical trials registry platform to gather associated registered clinical trials using an advanced search with the developed keyword strategy as of March 26, 2023. All obtainable information from the trials was collected without any restrictions to conduct a comprehensive review. RESULTS A total of 169 registered trials were included for evaluation. Of all trials, 102 trials were eligible for this study. Countries from Asia registered the most trials (62.75%), and hospitals sponsored most of the trials (42.16%). Randomized, Phase 2, interventional trials were dominant, and approximately 64.71% of the trials anticipated recruiting less than 100 participants. More than half of the trials were from 2016 to 2023 (53.92%). While 45 trials were completed, only 16 trials had results for further analysis. According to the completed results, the types of herbal medicines from the trials mainly focused on lung, breast, and colorectal cancer. CONCLUSION This study is the first to explore the characteristics of clinical trials of herbal medicine for cancer registered in large clinical databases. The acquired trials had relatively informative data; however, better-designed trials may be needed for health professionals to consider herbal medicine as an option when treating cancer patients.
Collapse
Affiliation(s)
- Bo-Young Youn
- Hwasung Medi-Science University, Hwaseong-si, Gyeonggi-do, South Korea
| | - Ji-Hyun Kim
- Kyung Hee University, Seoul, Republic of Korea
| | - Yong-Kyu Jo
- Kyung Hee University, Seoul, Republic of Korea
| | | | - Ji-Yeong Im
- Kyung Hee University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
18
|
An RNA-seq transcriptome analysis for investigating the anti-lung cancer activity of medicinal Cuscuta chinensis Lam plant. Br J Nutr 2022:1-13. [PMID: 36468438 DOI: 10.1017/s0007114522003865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cuscuta chinensis Lam. is a traditional medicinal herb used to treat female sterility and male reproductive system disorders. However, the anti-lung cancer properties of Cuscuta chinensis Lam. and possible molecular mechanisms have yet to be explored. Thus, the study’s main purpose was to evaluate in vitro and in vivo anti-lung cancer properties of C. chinensis water extract (CLW) in human lung adenocarcinomas and the underlying molecular mechanism involved. Our results demonstrated that CLW caused a significant inhibition of cell viability and induced G1 cycle arrest in lung cancer cells. Furthermore, RNA-seq transcriptome analysis revealed 602 common genes with a significant expression in A549 and H1650 cells under CLW treatment. Functional enrichment analysis suggested that these common genes regulated by CLW mainly involve lung cancer cell proliferation, metastases and apoptosis processes. In addition, forty-six common genes (> 2-fold change) regulated by CLW in A549 and H1650 cells were selected for further validation. In vitro quantitative real-time PCR results confirmed that twelve genes were up-regulated, and four genes were down-regulated in A549 and H1650 cells. The in vivo experiment demonstrated CLW could significantly decrease tumour volume and tumour weight of mice compared with the control group. Moreover, in vivo quantitative real-time PCR results revealed that C11orf96, FGFBP1, FOSB and NPTX1 genes were up-regulated and EGR1, GBP4 and MAP2K6 genes were down-regulated in tumour tissues compared with the control group. These data strongly suggest that CLW could be developed as an efficacious drug for lung cancer treatment.
Collapse
|
19
|
Yagüe E, Sun H, Hu Y. East Wind, West Wind: Toward the modernization of traditional Chinese medicine. Front Neurosci 2022; 16:1057817. [PMID: 36440293 PMCID: PMC9685990 DOI: 10.3389/fnins.2022.1057817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 08/16/2023] Open
Abstract
Traditional Chinese medicine (TCM) has used herbal remedies for more than 2,000 years. The use of complimentary therapies has increased dramatically during the last years, especially in the West, and the incorporation and modernization of TCM in current medical practice is gaining momentum. We reflect on the main bottlenecks in the modernization of arcane Chinese herbal medicine: lack of standardization, safety concerns and poor quality of clinical trials, as well as the ways these are being overcome. Progress in these areas will facilitate the implementation of an efficacy approach, in which only successful clinical trials lead to the molecular characterization of active compounds and their mechanism of action. Traditional pharmacological methodologies will produce novel leads and drugs, and we describe TCM successes such as the discovery of artemisinin as well as many others still in the pipeline. Neurodegenerative diseases, such as Parkinson's and Alzheimer's disease, cancer and cardiovascular disease are the main cause of mortality in the Western world and, with an increasing old population in South East Asia, this trend will also increase in the Far East. TCM has been used for long time for treating these diseases in China and other East Asian countries. However, the holistic nature of TCM requires a paradigm shift. By changing our way of thinking, from "one-target, one-drug" to "network-target, multiple-component-therapeutics," network pharmacology, together with other system biology methodologies, will pave the way toward TCM modernization.
Collapse
Affiliation(s)
- Ernesto Yagüe
- Division of Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - He Sun
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin, China
| | - Yunhui Hu
- Cloudphar Pharmaceuticals Co., Ltd., Shenzhen, China
| |
Collapse
|
20
|
In Vitro Cytotoxicity and Spectral Analysis-Based Phytochemical Profiling of Methanol Extract of Barleria hochstetteri, and Molecular Mechanisms Underlying Its Apoptosis-Inducing Effect on Breast and Lung Cancer Cell Lines. SEPARATIONS 2022. [DOI: 10.3390/separations9100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The objectives of this research were to carry out GC–MS and LC–MS-based phytochemical profiling of Barleria hochstetteri, as well as flow cytometry-based mechanistic investigations of the cytotoxic effect of its extracts against breast and lung cancer cell lines. This preclinical in vitro study was carried out in Saudi Arabia and India, from 11 August to 15 January 2022. Barleria hochstetteri was sequentially extracted using the Soxhlet extraction technique. Utilizing LC–MS and GC–MS methods, the phytochemical profiling was performed. Additionally, the total phenolic compounds and flavonoids were quantified in the plant extract using spectrophotometric techniques. In this study, we first examined the cytotoxicity of the plant extract on non-malignant L929 cells and on the carcinogenic MCF-7 and A549 cell lines. Then, we studied the underlying molecular pathways by means of Anti-Bcl-2, caspase-3, and DNA fragmentation (TUNEL) assays, using flow cytometry. The results revealed phenolic compounds and flavonoids to be the two major components in the methanolic extract of B. hochstetteri, with concentrations of 3210 µg GAE/g dwt and 1863 µg QE/g dwt, respectively. Results from GC–MS and LC–MS analyses revealed the presence of bioactive phytochemicals with known cytotoxicity. From the MTT assay on cell viability, the IC50 of the methanol extract for the MCF-7 and A549 cell lines were 219.67 and 144.30 µg/mL, respectively. With IC50 values of 324.24 and 266.66 µg/mL, respectively, the aqueous and methanol extracts were less toxic when tested against the non-cancerous L929 cell line. The extract caused early and late apoptosis in the tested breast and lung cancer cells by activating caspase-3 and inhibiting Bcl-2 protein, and it also caused cell death via DNA damage, based on flow cytometric and molecular marker analyses. These findings indicate that the methanol extract of B. hochstetteri was cytotoxic on breast cancer and lung cancer cell lines. To uncover cancer-fighting chemicals, there is a need for further research on B. hochstetteri, as it is a promising source of anti-cancer chemotherapeutic drugs.
Collapse
|
21
|
Lu DX, Liu F, Wu H, Liu HX, Chen BY, Yan J, Lu Y, Sun ZG. Wumei pills attenuates 5-fluorouracil-induced intestinal mucositis through Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB pathway and microbiota regulation. World J Gastroenterol 2022; 28:4574-4599. [PMID: 36157934 PMCID: PMC9476879 DOI: 10.3748/wjg.v28.i32.4574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Radiotherapy and chemotherapy can kill tumor cells and improve the survival rate of cancer patients. However, they can also damage normal cells and cause serious intestinal toxicity, leading to gastrointestinal mucositis[1]. Traditional Chinese medicine is effective in improving the side effects of chemotherapy. Wumei pills (WMP) was originally documented in the Treatise on Exogenous Febrile Diseases. It has a significant effect on chronic diarrhea and other gastrointestinal diseases, but it is not clear whether it affects chemotherapy-induced intestinal mucositis (CIM).
AIM To explore the potential mechanism of WMP in the treatment of CIM through experimental research.
METHODS We used an intraperitoneal injection of 5-fluorouracil (5-Fu) to establish a CIM mouse model and an oral gavage of WMP decoction (11325 and 22650 mg/kg) to evaluate the efficacy of WMP in CIM. We evaluated the effect of WMP on CIM by observing the general conditions of the mice (body weight, food intake, spleen weight, diarrhea score, and hematoxylin and eosin stained tissues). The expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, and myeloperoxidase (MPO), as well as the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathway proteins and tight junction proteins (zonula occludens-1, claudin-1, E-cadherin, and mucin-2) was determined. Furthermore, intestinal permeability, intestinal flora, and the levels of short-chain fatty acids (SCFA) were also assessed.
RESULTS WMP effectively improved the body weight, spleen weight, food intake, diarrhea score, and inflammatory status of the mice with intestinal mucositis, which preliminarily confirmed the efficacy of WMP in CIM. Further experiments showed that in addition to reducing the levels of TNF-α, IL-1β, IL-6, and MPO and inhibiting the expression of the TLR4/MyD88/NF-κB pathway proteins, WMP also repaired the integrity of the mucosal barrier of mice, regulated the intestinal flora, and increased the levels of SCFA (such as butyric acid).
CONCLUSION WMP can play a therapeutic role in CIM by alleviating inflammation, restoring the mucosal barrier, and regulating gut microbiota.
Collapse
Affiliation(s)
- Dong-Xue Lu
- Department of Nutrition, Acupuncture and Moxibustion and Massage College & Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Feng Liu
- Department of Orthopaedics, Nanjing Pukou District Chinese Medicine Hospital, Nanjing 210000, Jiangsu Province, China
| | - Hua Wu
- Department of Nutrition, Acupuncture and Moxibustion and Massage College & Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Hai-Xia Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Bing-Yu Chen
- Department of Geriatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 451150, Henan Province, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yin Lu
- Key Pharmacology Laboratory of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi-Guang Sun
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
22
|
Olaku O, Conley BA, Ivy SP, McShane LM, Staudt LM, King SM, Sansevere M, Kim B, White JD. Survey of Lifestyle, Past Medical History and Complementary and Alternative Medicine Use Among Adult Patients Participating in the National Cancer Institute's Exceptional Responders Initiative. Transl Oncol 2022; 25:101484. [PMID: 35944413 PMCID: PMC9365974 DOI: 10.1016/j.tranon.2022.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Fifty percent of exceptional responders changed diet after cancer diagnosis. Forty percent of exceptional responders changed level of physical activity after cancer diagnosis Sixty percent of subjects reported using complementary and alternative approaches during exceptional response period Complementary and alternative medicine users generally used multiple interventions
Introduction The Exceptional Responders Initiative (ERI) at the National Cancer Institute attempts to correlate unusually good outcomes in patients with cancer with genetic targets in tumors and the therapies the patients received. It is not known if other factors might contribute to exceptional responses or outcomes. We explored aspects of the medical history, lifestyle changes, complementary and alternative medicine (CAM) use and communication between health care practitioners and patients who experienced an exceptional response following cancer treatment. Methods All subjects whose case was submitted to the ERI were eligible to participate in the survey. A 121-question survey questionnaire was developed to assess aspects of the subject's past medical history, lifestyle (e.g., diet, exercise, spirituality) and use of CAM. Results Thirty subjects completed and returned the questionnaire from approximately 88 patients invited to participate (approximate response rate = 34%). Approximately 68% were female and 32% were male. Fifty percent of subjects changed their diet after their cancer diagnosis. Eighteen patients (60%) reported using a CAM therapy (not including oral vitamins/minerals or spiritual practices) during their Exceptional Response (ER). Conclusion Multiple factors, including features of the tumor itself, the patient, or the environment, could affect tumor response or patient survival, either solely or in combination with the treatments received. Many patients use other medications, change their diet or physical activity or use CAM interventions after their cancer diagnosis. Investigators attempting to understand the exceptional response phenomenon should acquire rich data sets of their subjects that include information about these factors.
Collapse
Affiliation(s)
- Oluwadamilola Olaku
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Barbara A Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - S Percy Ivy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Lisa M McShane
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Louis M Staudt
- Center for Cancer Genomics, National Cancer Institute, NIH, 31 Center Drive, Bethesda, MD 20892, USA.
| | - Sophie M King
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Megan Sansevere
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Benjamin Kim
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| | - Jeffrey D White
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, Zou L, Sui X, Xie T, Zhang J, Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445. [PMID: 35820601 DOI: 10.1016/j.addr.2022.114445] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The therapeutic limitations such as insufficient efficacy, drug resistance, metastasis, and undesirable side effects are frequently caused by the long duration monotherapy based on chemotherapeutic drugs. multiple combinational anticancer strategies such as nucleic acids combined with chemotherapeutic agents, chemotherapeutic combinations, chemotherapy and tumor immunotherapy combinations have been embraced, holding great promise to counter these limitations, while still taking including some potential risks. Nowadays, an increasing number of research has manifested the anticancer effects of phytochemicals mediated by modulating cancer cellular events directly as well as the tumor microenvironment. Specifically, these natural compounds exhibited suppression of cancer cell proliferation, apoptosis, migration and invasion of cancer cells, P-glycoprotein inhibition, decreasing vascularization and activation of tumor immunosuppression. Due to the low toxicity and multiple modulation pathways of these phytochemicals, the combination of chemotherapeutic agents with natural compounds acts as a novel approach to cancer therapy to increase the efficiency of cancer treatments as well as reduce the adverse consequences. In order to achieve the maximized combination advantages of small-molecule chemotherapeutic drugs and natural compounds, a variety of functional nano-scaled drug delivery systems, such as liposomes, host-guest supramolecules, supramolecules, dendrimers, micelles and inorganic systems have been developed for dual/multiple drug co-delivery. These co-delivery nanomedicines can improve pharmacokinetic behavior, tumor accumulation capacity, and achieve tumor site-targeting delivery. In that way, the improved antitumor effects through multiple-target therapy and reduced side effects by decreasing dose can be implemented. Here, we present the synergistic anticancer outcomes and the related mechanisms of the combination of phytochemicals with small-molecule anticancer drugs. We also focus on illustrating the design concept, and action mechanisms of nanosystems with co-delivery of drugs to synergistically improve anticancer efficacy. In addition, the challenges and prospects of how these insights can be translated into clinical benefits are discussed.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiao Feng
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wencheng Liu
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chengyong Wen
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
24
|
Wang KL, Yu YC, Chen HY, Chiang YF, Ali M, Shieh TM, Hsia SM. Recent Advances in Glycyrrhiza glabra (Licorice)-Containing Herbs Alleviating Radiotherapy- and Chemotherapy-Induced Adverse Reactions in Cancer Treatment. Metabolites 2022; 12:metabo12060535. [PMID: 35736467 PMCID: PMC9227067 DOI: 10.3390/metabo12060535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers represent a significant cause of morbidity and mortality worldwide. They also impose a large economic burden on patients, their families, and health insurance systems. Notably, cancers and the adverse reactions to their therapeutic options, chemotherapy and radiotherapy, dramatically affect the quality of life of afflicted patients. Therefore, developing approaches to manage chemotherapy- and radiotherapy-induced adverse reactions gained greater attention in recent years. Glycyrrhiza glabra (licorice), a perennial plant that is one of the most frequently used herbs in traditional Chinese medicine, has been heavily investigated in relation to cancer therapy. Licorice/licorice-related regimes, used in combination with chemotherapy, may improve the adverse effects of chemotherapy. However, there is little awareness of licorice-containing herbs alleviating reactions to radiotherapy and chemotherapy, or to other induced adverse reactions in cancer treatment. We aimed to provide a descriptive review, and to emphasize the possibility that licorice-related medicines could be used as an adjuvant regimen with chemotherapy to improve quality of life (QoL) and to reduce side effects, thus, improving compliance with chemotherapy. The experimental method involved searching different databases, including PubMed, the Cochrane Library, and Wang Fang database, as of May 2022, to identify any relevant studies. Despite a lack of high-quality and large-scale randomized controlled trials, we still discovered the potential benefits of licorice-containing herbs from published clinical studies. These studies find that licorice-containing herbs, and their active ingredients, reduce the adverse reactions caused by chemotherapy and radiotherapy, and improve the QoL of patients. This comprehensive review will serve as a cornerstone to encourage more scientists to evaluate and develop effective Traditional Chinese medicine prescriptions to improve the side effects of chemotherapy and radiation therapy.
Collapse
Affiliation(s)
- Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan;
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
| | - Ying-Chun Yu
- Sex Hormonal Research Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40403, Taiwan;
- Graduate Institute of Biomedical Sciences, Center for Tumor Biology, School of Medicine, China Medical University, Taichung 40403, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40403, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
25
|
Xu X, Fang C, Lu F, Liu S. Integrated Network Pharmacology and Gut Microbiota Study on the Mechanism of Huangqin Decoction in Treatment Diabetic Enteritis. Appl Bionics Biomech 2022; 2022:5080191. [PMID: 35432593 PMCID: PMC9010212 DOI: 10.1155/2022/5080191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Objective Using network pharmacology and gut microbiota sequencing to investigate the probable mechanism of Huangqin decoction in the treatment of Diabetic enteritis (DE). Methods The mechanism of Huangqin decoction on DE was studied by combining network pharmacology and gut microbiota sequencing analysis. The core components and possible targets of Huangqin decoction were analyzed by network pharmacology. The effect of Huangqin decoction on microorganisms was investigated by gut microbiota sequencing. Results The results of gut microbiota sequencing analysis showed the abundance of TM7, Tenericutes, Chloroflexi, Cyanobacteria, Acidobacteria, WS6, [Prevotella], Helicobacter, Prevotella, Lactococcus, and Anaeroplasma in the Huangqin decoction group had a significant downward. Using a network pharmacology-related database, 141 main active components of Huangqin decoction were identified, as well as 256 corresponding component targets and 1777 corresponding disease targets; the disease targets and component targets were mapped, and topological analysis was used to determine the potential of Huangqin decoction in the treatment of DE. There were 156 targets, of which the top 20 genes were selected for GO and KEGG. The KEGG results showed that 134 pathways were enriched, which was partially consistent with the metabolic pathways of gut microbiota sequencing analysis. Conclusion The results show that Huangqin decoction can inhibit the expression of inflammatory factors and related inflammatory pathways in intestinal epithelial cells, thereby regulating the structure of intestinal flora. Using picurst2 for functional prediction and metabolic pathway statistics, seven metabolic pathways were obtained consistent with gut microbiota sequencing, and the NOD-like receptor signaling pathway may be its potential molecular mechanism. These results help to understand the mechanism of Huangqin decoction on DE and provide the theoretical basis for further study of Huangqin decoction.
Collapse
Affiliation(s)
- Xiaomin Xu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Cheng Fang
- Drug Safety Evaluation Center of Heilongjiang University of Traditional Chinese Medicine, 150040, China
| | - Fang Lu
- School of Continuing Education, Heilongjiang University of Traditional Chinese Medicine, China
| | - Shumin Liu
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
26
|
Research on the Protective Effect of MiR-185-3p Mediated by Huangqin-Tang Decoction (HQT) on the Epithelial Barrier Function of Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:4775606. [PMID: 34970325 PMCID: PMC8714350 DOI: 10.1155/2021/4775606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 01/15/2023]
Abstract
Introduction It has been reported that the traditional Chinese medicine Huangqin-Tang decoction (HQT) has a protective effect on the epithelial barrier function of ulcerative colitis, but its mechanism has not been fully clarified. This study intends to explore the protective mechanism of HQT in regulating microRNA (miRNA) for the first time. Methods Based on the Balb/c mice ulcerative colitis model, the mice were given a gavage of 0.1 mL/10 g HQT every day for 7 days; on the 8th day, the colon of the mice was dissected, the length of the colon for the mice was measured, and the score was given based on this. Analysis of colonic mucosal injury was conducted by hematoxylin-eosin staining. Then, the differential miRNA was screened and sequenced in colon tissue using the HiSeq platform. And the differential miR-185-3p gene was verified by RT-PCR. Finally, the effects of HQT on miR-185-3p, occludin protein expression, and transepithelial electrical resistance (TEER) value were observed in combination with the CaCo2 intestinal epithelial cell model. Results HQT treatment can alleviate the shortening of colon length and reverse the intestinal mucosal injury. miRNA sequencing of colonic tissue showed that miR-185-3p was significantly downregulated in the model group, while HQT could upregulate miR-185-3p, thereby affecting the myosin light chain kinase (MLCK)/myosin light chain phosphorylation (p-MLC) pathway and leading to increased expression of occludin protein, which ultimately protected the intestinal epithelial barrier function. Conclusion HQT can protect colon epithelial barrier function by regulating miR-185-3p.
Collapse
|
27
|
Guo DA, Yao CL, Wei WL, Zhang JQ, Bi QR, Li JY, Khan I, Bauer R. Traditional Chinese medicines against COVID-19: A global overview. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
28
|
Alsayari A, Wahab S. Genus Ziziphus for the treatment of chronic inflammatory diseases. Saudi J Biol Sci 2021; 28:6897-6914. [PMID: 34866990 PMCID: PMC8626254 DOI: 10.1016/j.sjbs.2021.07.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and traditional medicine are rich sources for developing therapeutics for chronic inflammatory diseases. However, the way from natural products/traditional medicines to Western pharmaceutical practices is not always straightforward. According to the World Health Organization (WHO), chronic diseases are the greatest threat to human health. 3 of 5 people die due to chronic inflammatory disorders worldwide like chronic respiratory diseases, stroke, cardiovascular diseases, cancer, diabetes, and obesity. Various nonsteroidal anti-inflammatory drugs (NSAIDs) are used to reduce inflammation and pain, but there are many side effects of these drugs' administration. Medicinal plants have therapeutic anti-inflammatory effects with low or no side effects. Ziziphus plant species are generally safe and not toxic to humans. Many studies on the Ziziphus species have shown that their therapeutic properties are attributed to the roots, leaves and fruits. Unfortunately, Ziziphus species from different regions worldwide with anti-inflammatory properties have not been documented in a single review paper. Therefore, it is crucial to establish ethnobotanical knowledge and applications of Ziziphus species against chronic inflammatory diseases. The current article exhaustively reviews phytochemical profile, pharmacological studies, toxicological effects, and ethnobotanical uses of Genus Ziziphus in chronic anti-inflammatory diseases. The present review article also highlights the most promising experimental data on Ziziphus extracts and pure compounds active in clinical trials and animal models of chronic inflammatory diseases. This review would be a valuable resource for contemporary researchers in the field to understand the promising role of the Ziziphus genus in chronic inflammatory disorders.
Collapse
Affiliation(s)
- Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
29
|
Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics. Molecules 2021; 26:molecules26216541. [PMID: 34770949 PMCID: PMC8587539 DOI: 10.3390/molecules26216541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolite profiling of cancer cells presents many opportunities for anticancer drug discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer therapeutics as documented in traditional folklores. In-depth scientific information relating to mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer mechanisms of action of plants but this has remained largely unexplored. This review, therefore, presents the available metabolomics studies on the anticancer effects of herbal medicines commonly used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’ for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of using metabolomics to uncover the underlying mechanisms of potential anticancer herbs and the progress made in this regard.
Collapse
|
30
|
Upreti S, Pandey SC, Bisht I, Samant M. Evaluation of the target-specific therapeutic potential of herbal compounds for the treatment of cancer. Mol Divers 2021; 26:1823-1835. [PMID: 34240331 DOI: 10.1007/s11030-021-10271-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022]
Abstract
Cancer is among one of the most fatal diseases leading to millions of death around the globe. Chemotherapy is the most popular conventional approach for the treatment of cancer. However, this is usually associated with various side effects and puts the patients under extreme physical and mental stress. Besides, there are increasing concerns about drug resistance. Thus, to surmount these limitations, there is a need to explore some alternative treatments. Studies related to plant-derived compounds are crucial in the search for safer and more efficient treatments. Plants and their associated secondary metabolites have been a revolutionary approach in the field of cancer treatment, as they give answers to almost all the constraints faced by synthetic drugs. Various plants and associated secondary metabolites display a great prospective as cytotoxic anticancer agents due to their specific interference with validated drug targets, such as inhibitors of mitosis, topoisomerase I and II inhibitor, DNA interactive agent, protein kinase inhibitors, inhibitors of DNA synthesis. In this review, the therapeutic potential of various natural compounds and their derivatives are presented based on their molecular targets. These herbal compounds and their derivatives could provide a rich resource for novel anticancer drug development.
Collapse
Affiliation(s)
- Shobha Upreti
- Cell and Molecular Biology Laboratory, Department Of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department Of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Ila Bisht
- Cell and Molecular Biology Laboratory, Department Of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department Of Zoology, Kumaun University, SSJ Campus, Almora, Uttarakhand, India.
| |
Collapse
|
31
|
YIV-906 potentiated anti-PD1 action against hepatocellular carcinoma by enhancing adaptive and innate immunity in the tumor microenvironment. Sci Rep 2021; 11:13482. [PMID: 34188068 PMCID: PMC8242098 DOI: 10.1038/s41598-021-91623-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 11/08/2022] Open
Abstract
YIV-906 (PHY906) is a standardized botanical cancer drug candidate developed with a systems biology approach—inspired by a traditional Chinese herbal formulation, historically used to treat gastrointestinal symptoms including diarrhea, nausea and vomiting. In combination with chemotherapy and/or radiation therapy, preclinical and clinical results suggest that YIV-906 has the potential to prolong survival and improve quality of life for cancer patients. Here, we demonstrated that YIV-906 plus anti-PD1 could eradicate all Hepa 1–6 tumors in all tumor bearing mice. YIV-906 was found to have multiple mechanisms of action to enhance adaptive and innate immunity. In combination, YIV-906 reduced PD1 or counteracted PD-L1 induction caused by anti-PD1 which led to higher T-cell activation gene expression of the tumor. In addition, YIV-906 could reduce immune tolerance by modulating IDO activity and reducing monocytic MDSC of the tumor. The combination of anti-PD1 and YIV-906 generated acute inflammation in the tumor microenvironment with more M1-like macrophages. YIV-906 could potentiate the action of interferon gamma (IFNg) to increase M1-like macrophage polarization while inhibiting IL4 action to decrease M2 macrophage polarization. Flavonoids from YIV-906 were responsible for modulating IDO activity and potentiating IFNg action in M1-like macrophage polarization. In conclusion, YIV-906 could act as an immunomodulator and enhance the innate and adaptive immune response and potentiate anti-tumor activity for immunotherapies to treat cancer.
Collapse
|
32
|
Li MY, Li MX, Xu N, Li ZH, Zhang YM, Gan YX, Luo HJ, Zhou CL, Liu YH, Su ZR, Huang XQ, Zheng XB. Effects of Huangqin Decoction on ulcerative colitis by targeting estrogen receptor alpha and ameliorating endothelial dysfunction based on system pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113886. [PMID: 33524513 DOI: 10.1016/j.jep.2021.113886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqin Decoction (HQD), a traditional Chinese medicinal (TCM) formula chronicled in Shang Han Lun, has been used to treat gastrointestinal diseases for nearly 1800 years. OBJECTIVE To investigate the effects and underlying mechanisms of HQD on ulcerative colitis (UC). METHODS The bioactive compounds in HQD were obtained from the traditional Chinese medicine systems pharmacology database. Then, the HQD and UC-related targets were analyzed by establishing HQD-Compounds-Targets (H-C-T) and protein-protein interaction (PPI) networks. Enrichment analysis was used for further study. The candidate targets for the effects of HQD on UC were validated using a dextran sulfate sodium-induced UC mouse experiment. RESULTS The results showed that 51 key targets were gained by matching 284 HQD-related targets and 837 UC-related targets. Combined with H-C-T and PPI network analyses, the key targets were divided into endothelial growth, inflammation and signal transcription-related targets. Further experimental validation showed that HQD targeted estrogen receptor alpha (ESR1) and endothelial growth factor receptors to relieve endothelial dysfunction, thereby improving intestinal barrier function. The expression of inflammatory cytokines and signal transducers was suppressed by HQD treatment and inflammation was inhibited. CONCLUSIONS HQD may acts on UC via the regulation of targets and pathways related to improving the intestinal mucosal barrier and ameliorating endothelial dysfunction. Additionally, ERS1 may be a new target to explore the mechanisms of UC.
Collapse
Affiliation(s)
- Min-Yao Li
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mu-Xia Li
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Xu
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ze-Hao Li
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao-Min Zhang
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Songshan Lake Yidao TCM Clinic, Dongguan, China
| | - Yu-Xuan Gan
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Juan Luo
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang-Lin Zhou
- Graduate School, Guangdong Medical University, Dongguan, China
| | - Yu-Hong Liu
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Qi Huang
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xue-Bao Zheng
- School of Pharmaceutical Sciences (Mathematical Engineering Academy of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China; Dongguan Songshan Lake Yidao TCM Clinic, Dongguan, China.
| |
Collapse
|
33
|
Chen M, Xiao H, Chen B, Bian Z, Kwan HY. The advantages of using Scutellaria baicalensis and its flavonoids for the management of non-viral hepatocellular carcinoma. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
34
|
Changou CA, Shiah HS, Chen LT, Liu S, Luh F, Liu SH, Cheng YC, Yen Y. A Phase II Clinical Trial on the Combination Therapy of PHY906 Plus Capecitabine in Hepatocellular Carcinoma. Oncologist 2021; 26:e367-e373. [PMID: 33140457 PMCID: PMC7930412 DOI: 10.1002/onco.13582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
LESSONS LEARNED A PHY906 and capecitabine combination could be effective as a salvage therapy for patients with hepatocellular carcinoma (HCC) previously treated with multiple systemic therapies. This traditional Chinese medicine formulation can work with Western cancer chemotherapeutic agents to improve clinical outcomes or alleviate side effects for patients with advanced HCC. BACKGROUND This study aimed to evaluate efficacy and safety of capecitabine combined with a PHY906 (a pharmaceutical-grade formulation of four traditional Chinese herbs) in the treatment of advanced hepatocellular carcinoma (HCC) in Asian patients who were positive for hepatitis B virus (HBV). METHODS This study was an open-label, phase II safety and efficacy clinical trial of PHY906 and capecitabine in patients with advanced HCC. Patients received 750 mg/m2 capecitabine b.i.d. 14 days plus 800 mg of PHY906 b.i.d. on days 1-4 and days 8-11 every 21-day cycle. The primary endpoint was 6-month survival rate, and secondary endpoints were progression-free survival, overall survival, disease control rate, and safety. RESULTS Thirty-nine subjects completed the study with a 46.2% stable disease rate. The median progression-free survival was 1.5 months, and median overall survival (mOS) was 6 months with a 51.3% 6-month survival rate. The most common adverse events included lower hemoglobin, diarrhea, pain, abdomen (not otherwise specified), fatigue, increased aspartate aminotransferase, and bilirubin. Patients who (a) had not received previous chemotherapies or targeted therapy or (b) had lower starting alpha-fetoprotein (AFP) levels or (c) had HBV infection showed better clinical outcome. CONCLUSION Our data showed that PHY906 increases the therapeutic index of capecitabine by enhancing its antitumor activity and reduces its toxicity profile in advanced HCC.
Collapse
Affiliation(s)
- Chun A Changou
- The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- The PhD program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Her-Shyong Shiah
- The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | | | - Servina Liu
- Sino-American Cancer Foundation, Covina, California, USA
| | - Frank Luh
- Sino-American Cancer Foundation, Covina, California, USA
| | | | - Yung-Chi Cheng
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yun Yen
- The PhD program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
Jang J, Lee H, Song J, Bae T, Park M, Kwon YV, Lee D, Yoon Y. Paeonia lactiflora extract suppresses cisplatin-induced muscle wasting via downregulation of muscle-specific ubiquitin E3 ligases, NF-κB signaling, and cytokine levels. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113403. [PMID: 32971160 DOI: 10.1016/j.jep.2020.113403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried root of Paeonia lactiflora Pall. (Radix Paeoniae) has been traditionally used to treat various inflammatory diseases in many Asian countries. AIM OF THE STUDY Cisplatin is a broad-spectrum anticancer drug used in diverse types of cancer. However, muscle wasting is a common side effect of cisplatin chemotherapy. This study aimed to elucidate the effects of an ethanol extract of the root of Paeonia lactiflora Pall. (Radix Paeoniae, RP) on cisplatin-induced muscle wasting along with its molecular mechanism. MATERIAL AND METHODS C57BL/6 mice were intraperitoneally injected with cisplatin and orally treated with RP. Megestrol acetate was used as a comparator drug. Skeletal muscle mass was measured as the weight of gastrocnemius and quadriceps muscles, and skeletal muscle function was measured by treadmill running time and grip strength. Skeletal muscle tissues were analyzed by RNAseq, western blotting, ELISA, and immunofluorescence microscopy. RESULTS In mice treated with cisplatin, skeletal muscle mass and skeletal muscle function were significantly reduced. However, oral administration of RP significantly restored skeletal muscle mass and function in the cisplatin-treated mice. In the skeletal muscle tissues of the cisplatin-treated mice, RP downregulated NF-κB signaling and cytokine levels. RP also downregulated muscle-specific ubiquitin E3 ligases, resulting in the restoration of myosin heavy chain (MyHC) and myoblast determination protein (MyoD), which play crucial roles in muscle contraction and muscle differentiation, respectively. CONCLUSION RP restored skeletal muscle function and mass in cisplatin-treated mice by restoring the muscle levels of MyHC and MyoD proteins via downregulation of muscle-specific ubiquitin E3 ligases as well as muscle NF-κB signaling and cytokine levels.
Collapse
Affiliation(s)
- Jaewoong Jang
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Hyunji Lee
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jaewon Song
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Taehyun Bae
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Minwoo Park
- Research Center, EBIOGEN Inc., 25 Seonyuro 13-gil, Seoul, 07282, Republic of Korea.
| | - Young V Kwon
- Department of Biochemistry, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Daejeon, 34141, Republic of Korea; Bio-Synergy Research Center, 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| | - Yoosik Yoon
- Department of Microbiology, Chung-Ang University College of Medicine, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea; Bio-Synergy Research Center, 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
36
|
Yao CL, Zhang JQ, Li JY, Wei WL, Wu SF, Guo DA. Traditional Chinese medicine (TCM) as a source of new anticancer drugs. Nat Prod Rep 2021; 38:1618-1633. [PMID: 33511969 DOI: 10.1039/d0np00057d] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: up to July 2020Drugs derived from traditional Chinese medicine (TCM) include both single chemical entities and multi-component preparations. Drugs of both types play a significant role in the healthcare system in China, but are not well-known outside China. The research and development process, the molecular mechanisms of action, and the clinical evaluation associated with some exemplificative anticancer drugs based on TCM are discussed, along with their potential of integration in western medicine.
Collapse
Affiliation(s)
- Chang-Liang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jian-Qing Zhang
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Jia-Yuan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Wen-Long Wei
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Shi-Fei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| |
Collapse
|
37
|
Pandey Y, Ambwani S. Nano Metal based Herbal theranostics for Cancer management: coalescing nature's boon with nanotechnological advancement. Curr Pharm Biotechnol 2021; 23:30-46. [PMID: 33480341 DOI: 10.2174/1389201022666210122141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
Cancer is amongst the leading public health problems globally with continuously increasing prevalence rate that demands for extensive and expensive treatment. Despite availability of number of potential cancer therapies, inadequate success has been achieved due to complexity and heterogeneity of tumors. Moreover, late/ terminal stage cancer leads to multidrug resistance, excruciating side effects, recurrence, etc. This is because of low penetrability and deleterious effects of drug on non-target cells/ tissues. This requires for cost effective, efficacious, alternative/ adjunct, complementary medicines with targeted drug delivery approach. A potential strategy to resolve this difficulty is to use theranostics i.e., formulations having both a therapeutic element and an imaging agent. Phytotherapeutics have been extensively used since times immemorial, having wide acceptability, easy availability, minimal side effects and comparatively inexpensive. These herbal formulations are mostly orally administered and thus subjected to adverse pH, enzymatic degradation, poor gut absorption, low bioavailability and non-targeted delivery that ultimately lead to their poor effectiveness. Constraints associated with conventional phyto-pharmaceuticals can be improved by designing and using "Nano Delivery Systems" (NDS). The foremost aim of metal based NDS is to provide sustained drug release, site-specific action, improved patient's compliance and enhanced efficacy. Metal Nanocarriers carrying herbal drugs will avoid these obstructions, so the drug can circulate into the blood for a longer period of time and provide optimal amount of the drug to the site of action. Besides, Herbal drugs with NDS thus would be efficacious as alternative/ complementary cancer theranostics. Present review describes about novel theranostic systems employing metal nanocarriers with diagnostic and therapeutic properties as are an effective strategy for cancer treatment. These systems when conjugated with herbal drugs provide an efficient management strategy for cancer.
Collapse
Affiliation(s)
- Yogesh Pandey
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., G.B. Pant University of Agriculture &Technology, Pantnagar, 263145, Uttarakhand. India
| | - Sonu Ambwani
- Department of Molecular Biology and Genetic Engineering, C.B.S.H., G.B. Pant University of Agriculture &Technology, Pantnagar, 263145, Uttarakhand. India
| |
Collapse
|
38
|
WGCNA reveals key gene modules regulated by the combined treatment of colon cancer with PHY906 and CPT11. Biosci Rep 2020; 40:226138. [PMID: 32812032 PMCID: PMC7468096 DOI: 10.1042/bsr20200935] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Irinotecan (CPT11) is one of the most effective drugs for treating colon cancer, but its severe side effects limit its application. Recently, a traditional Chinese herbal preparation, named PHY906, has been proved to be effective for improving therapeutic effect and reducing side effects of CPT11. The aim of the present study was to provide novel insight to understand the molecular mechanism underlying PHY906-CPT11 intervention of colon cancer. Based on the GSE25192 dataset, for different three treatments (PHY906, CPT11, and PHY906-CPT11), we screened out differentially expressed genes (DEGs) and constructed a co-expression network by weighted gene co-expression network analysis (WGCNA) to identify hub genes. The key genes of the three treatments were obtained by merging the DEGs and hub genes. For the PHY906-CPT11 treatment, a total of 18 key genes including Eif4e, Prr15, Anxa2, Ddx5, Tardbp, Skint5, Prss12 and Hnrnpa3, were identified. The results of functional enrichment analysis indicated that the key genes associated with PHY906-CPT11 treatment were mainly enriched in ‘superoxide anion generation’ and ‘complement and coagulation cascades’. Finally, we validated the key genes by Gene Expression Profiling Interactive Analysis (GEPIA) and RT-PCR analysis, the results indicated that EIF4E, PRR15, ANXA2, HNRNPA3, NCF1, C3AR1, PFDN2, RGS10, GNG11, and TMSB4X might play an important role in the treatment of colon cancer with PHY906-CPT11. In conclusion, a total of 18 key genes were identified in the present study. These genes showed strong correlation with PHY906-CPT11 treatment in colon cancer, which may help elucidate the underlying molecular mechanism of PHY906-CPT11 treatment in colon cancer.
Collapse
|
39
|
Fan Y, Ma Z, Zhao L, Wang W, Gao M, Jia X, Ouyang H, He J. Anti-tumor activities and mechanisms of Traditional Chinese medicines formulas: A review. Biomed Pharmacother 2020; 132:110820. [DOI: 10.1016/j.biopha.2020.110820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
|
40
|
Son J, Lee SY. Therapeutic Potential of Ursonic Acid: Comparison with Ursolic Acid. Biomolecules 2020; 10:E1505. [PMID: 33147723 PMCID: PMC7693102 DOI: 10.3390/biom10111505] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
Plants have been used as drugs to treat human disease for centuries. Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid extracted from certain medicinal herbs such as Ziziphus jujuba. Since the pharmacological effects and associated mechanisms of UNA are not well-known, in this work, we attempt to introduce the therapeutic potential of UNA with a comparison to ursolic acid (ULA), a well-known secondary metabolite, for beneficial effects. UNA has a keto group at the C-3 position, which may provide a critical difference for the varied biological activities between UNA and ULA. Several studies previously showed that UNA exerts pharmaceutical effects similar to, or stronger than, ULA, with UNA significantly decreasing the survival and proliferation of various types of cancer cells. UNA has potential to exert inhibitory effects in parasitic protozoa that cause several tropical diseases. UNA also exerts other potential effects, including antihyperglycemic, anti-inflammatory, antiviral, and antioxidant activities. Of note, a recent study highlighted the suppressive potential of UNA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular modifications of UNA may enhance bioavailability, which is crucial for in vivo and clinical studies. In conclusion, UNA has promising potential to be developed in anticancer and antiprotozoan pharmaceuticals. In-depth investigations may increase the possibility of UNA being developed as a novel reagent for chemotherapy.
Collapse
Affiliation(s)
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Korea;
| |
Collapse
|
41
|
Lee GY, Lee JS, Son CG, Lee NH. Combating Drug Resistance in Colorectal Cancer Using Herbal Medicines. Chin J Integr Med 2020; 27:551-560. [PMID: 32740824 DOI: 10.1007/s11655-020-3425-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancer types around the world. Most of the CRC patients are treated with chemotherapeutic drugs alone or combined. However, up to 90% of metastatic cancer patients experience the failure of treatment mostly because of the acquired drug resistance, which can be led to multidrug resistance (MDR). In this study, we reviewed the recent literature which studied potential CRC MDR reversal agents among herbal medicines (HMs). Among abundant HMs, 6 single herbs, Andrographis paniculata, Salvia miltiorrhiza, Hedyotis diffusa, Sophora flavescens, Curcuma longa, Bufo gargarizans, and 2 formulae, Pien Tze Huang and Zhi Zhen Fang, were found to overcome CRC MDR by two or more different mechanisms, which could be a promising candidate in the development of new drugs for adjuvant CRC chemotherapy.
Collapse
Affiliation(s)
- Ga-Young Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea.,Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Jin-Seok Lee
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Chang-Gue Son
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Nam-Hun Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea. .,Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea. .,Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
42
|
TUZCU A, İPEK M. Meme kanseri hastalarının tamamlayıcı tedavilerin kullanımına ilişkin inanç ve deneyimleri: Kalitatif bir çalışma. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.699833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
An oligosaccharide-marker approach to quantify specific polysaccharides in herbal formula by LC-qTOF-MS: Danggui Buxue Tang, a case study. J Pharm Biomed Anal 2020; 185:113235. [DOI: 10.1016/j.jpba.2020.113235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022]
|
44
|
Liang H, Liu H, Kuang Y, Chen L, Ye M, Lai L. Discovery of Targeted Covalent Natural Products against PLK1 by Herb-Based Screening. J Chem Inf Model 2020; 60:4350-4358. [PMID: 32407091 DOI: 10.1021/acs.jcim.0c00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural products (NPs) are a rich source of drug discovery, and some of them act by covalently binding to the targets. Recently, targeted covalent natural product (TCNP) design has gained considerable attention since this approach offers significant benefits in improving biological efficacy and decreasing the off-target side effects. However, most of the known TCNPs were discovered by chance. Rational approaches for a systematic screen of TCNPs are much needed. Here, we developed a combined computational and experimental approach to carry out herb-based screening to identify TCNPs against proper cysteine residues in the target proteins. The herb-based TCNP screening approach (HB-TCNP) starts from a druggable pocket and cysteine residue prediction, followed by virtual screening of a covalent NP database and herb-based mapping to identify candidate herbs for experimental validation. Herbs with time-dependent activity are selected, and their NPs are experimentally tested to further screen covalent NPs. We have successfully applied HB-TCNP to screen anti-PLK1 herbs and NPs with high efficacy. Cys67 and Cys133 in the ATP binding pocket of PLK1 were used in the search. Five herbs were tested and exhibited PLK1 inhibition activity to some extent, among which Scutellaria baicalensis showed the most potent activity with time dependency. Further experimental studies showed that the main active compounds in Scutellaria baicalensis, baicalein and baicalin, covalently bind PLK1 through Cys133. Our study provided an efficient way to rationally design TCNPs and to make better use of herb medicines. The Cys133 residue in PLK1 serves as a novel covalent site for further drug discovery against PLK1.
Collapse
Affiliation(s)
- Hao Liang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hongbo Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Limin Chen
- Peking-Tsinghua Center for Life Sciences at Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences at Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
45
|
Gomez-Cadena A, Barreto A, Fioretino S, Jandus C. Immune system activation by natural products and complex fractions: a network pharmacology approach in cancer treatment. Cell Stress 2020; 4:154-166. [PMID: 32656498 PMCID: PMC7328673 DOI: 10.15698/cst2020.07.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Natural products and traditional herbal medicine are an important source of alternative bioactive compounds but very few plant-based preparations have been scientifically evaluated and validated for their potential as medical treatments. However, a promising field in the current therapies based on plant-derived compounds is the study of their immunomodulation properties and their capacity to activate the immune system to fight against multifactorial diseases like cancer. In this review we discuss how network pharmacology could help to characterize and validate natural single molecules or more complex preparations as promising cancer therapies based on their multitarget capacities.
Collapse
Affiliation(s)
- Alejandra Gomez-Cadena
- Department of Pathology and Immunology, Targeting of Cytokine Secreting Lymphocyte group, Geneva University, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Switzerland.,Departamento de Microbiología, Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Departamento de Microbiología, Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fioretino
- Departamento de Microbiología, Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camilla Jandus
- Department of Pathology and Immunology, Targeting of Cytokine Secreting Lymphocyte group, Geneva University, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Switzerland
| |
Collapse
|
46
|
Effect of Huangqin Tang on Colonic Gene Expression in Rats with Ulcerative Colitis. Int J Genomics 2020; 2020:4238757. [PMID: 32300604 PMCID: PMC7140145 DOI: 10.1155/2020/4238757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
In this study, we explored the pharmacological mechanisms of Huangqin Tang (HQT; a traditional Chinese medicine formula) in ulcerative colitis (UC) and provided evidence for potential roles HQT plays by gene expression profiling. The UC rat model was made via a compound method (trinitrobenzene sulfonic acid plus ethanol). After a ten-day treatment, microarray analysis was performed from the colon segment of the rats. Biological functions and specific signaling pathways were enriched based on differentially expressed genes (DEG), and corresponding gene networks were constructed via Ingenuity Pathway Analysis (IPA). Through the network, we screened the potential “candidate targets,” such as ITGB1, FN1, CASP3, and ITGA5 and FABP1, ABCB1, FABP2, and SLC51B. These potential candidate targets were functionally related to immune responses, inflammation, and metabolism. Moreover, HQT significantly decreased serum levels of proinflammatory factors nitrogen monoxide (NO), proinflammatory cytokines interleukin- (IL-) 17, and prostaglandin E2 (PGE2). The degree of HE staining of colonic tissue was severe in the model group but reduced significantly in the HQT group. HQT exhibited protective effects against colon damage by inhibiting the inflammatory response.
Collapse
|
47
|
Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR, Darr DB, Bailey ST, Montgomery SA, Roach JM, Azcarate-Peril MA, Sartor RB, Gharaibeh RZ, Bultman SJ, Redinbo MR. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci U S A 2020; 117:7374-7381. [PMID: 32170007 PMCID: PMC7132129 DOI: 10.1073/pnas.1918095117] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial β-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models. We use in vitro, in fimo, and in vivo models to determine whether GUS inhibition alters the anticancer efficacy of irinotecan. We demonstrate that a single dose of irinotecan increases GI bacterial GUS activity in 1 d and reduces intestinal epithelial cell proliferation in 5 d, both blocked by a single dose of a GUS inhibitor. In a tumor xenograft model, GUS inhibition prevents intestinal toxicity and maintains the antitumor efficacy of irinotecan. Remarkably, GUS inhibitor also effectively blocks the striking irinotecan-induced bloom of Enterobacteriaceae in immune-deficient mice. In a genetically engineered mouse model of cancer, GUS inhibition alleviates gut damage, improves survival, and does not alter gut microbial composition; however, by allowing dose intensification, it dramatically improves irinotecan's effectiveness, reducing tumors to a fraction of that achieved by irinotecan alone, while simultaneously promoting epithelial regeneration. These results indicate that targeted gut microbial enzyme inhibitors can improve cancer chemotherapeutic outcomes by protecting the gut epithelium from microbial dysbiosis and proliferative crypt damage.
Collapse
Affiliation(s)
- Aadra P Bhatt
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
| | - Samuel J Pellock
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - Kristen A Biernat
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - William G Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - Bret D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - Benjamin C Creekmore
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| | - Marine M Letertre
- Computational and Systems Medicine, Department of Surgery & Cancer, Imperial College London, SW7 2AZ London, United Kingdom
| | - Jonathan R Swann
- Computational and Systems Medicine, Department of Surgery & Cancer, Imperial College London, SW7 2AZ London, United Kingdom
| | - Ian D Wilson
- Computational and Systems Medicine, Department of Surgery & Cancer, Imperial College London, SW7 2AZ London, United Kingdom
| | - Jose R Roques
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - David B Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Sean T Bailey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie A Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7525
| | - Jeffrey M Roach
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
| | - R Balfour Sartor
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7555
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Raad Z Gharaibeh
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610
| | - Scott J Bultman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7264
| | - Matthew R Redinbo
- Department of Biochemistry, Integrated Program for Biological and Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290;
- Department of Biophysics, Integrated Program for Biological and Genome Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290
| |
Collapse
|
48
|
Li MY, Luo HJ, Wu X, Liu YH, Gan YX, Xu N, Zhang YM, Zhang SH, Zhou CL, Su ZR, Huang XQ, Zheng XB. Anti-Inflammatory Effects of Huangqin Decoction on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice Through Regulation of the Gut Microbiota and Suppression of the Ras-PI3K-Akt-HIF-1α and NF-κB Pathways. Front Pharmacol 2020; 10:1552. [PMID: 32038240 PMCID: PMC6984456 DOI: 10.3389/fphar.2019.01552] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Huangqin decoction (HQD), a classical traditional Chinese medicinal formula, has been commonly used to treat gastrointestinal diseases for thousands of years. We investigated the anti-inflammatory effects and underlying mechanisms of HQD on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). Methods Experimental mice were given 3% DSS, and HQD (2.275, 4.55, and 9.1 g/kg), or mesalazine (ME, 200 mg/kg) orally for 7 days. Body weight loss, disease activity index (DAI), colon length, histology, and levels of inflammatory cytokines were measured to evaluate the effects of HQD on colitis. The effects of HQD on the Ras-phosphoinositide-3-kinase (PI3K)-Akt-hypoxia inducible factor 1 alpha (HIF-1α) and nuclear factor-kappa B (NF-κB) pathways were evaluated by Western blot analysis. In addition, the gut microbiota was characterized using high-throughput Illumina MiSeq sequencing. Results The results showed that HQD significantly reduced the body weight loss, ameliorated DAI, restored colon length, and improved the intestinal epithelial cell barrier in mice with DSS-induced colitis. The messenger RNA (mRNA) expression levels of inflammatory mediators were decreased following HQD treatment. Furthermore, the Ras-PI3K-Akt-HIF-1α and NF-κB pathways were significantly inhibited by HQD. Finally, treatment with HQD resulted in recovery of gut microbiota diversity. Conclusions HQD ameliorates DSS-induced colitis through regulation of the gut microbiota, and suppression of Ras-PI3K-Akt-HIF-1α and NF-κB pathways. Our results suggested that HQD may be a potential candidate for treatment of UC.
Collapse
Affiliation(s)
- Min-Yao Li
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Juan Luo
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Wu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Hong Liu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-Xuan Gan
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nan Xu
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao-Min Zhang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Songshan Lake Yidao TCM Clinic, Dongguan, China
| | - Shu-Hua Zhang
- Graduate School, Guangdong Medical University, Dongguan, China
| | - Chang-Lin Zhou
- Graduate School, Guangdong Medical University, Dongguan, China
| | - Zi-Ren Su
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Qi Huang
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Bao Zheng
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Songshan Lake Yidao TCM Clinic, Dongguan, China
| |
Collapse
|
49
|
Ursonic acid exerts inhibitory effects on matrix metalloproteinases via ERK signaling pathway. Chem Biol Interact 2019; 315:108910. [PMID: 31790661 DOI: 10.1016/j.cbi.2019.108910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Ursonic acid is a pentacyclic triterpenoid compound that can be extracted from Ziziphus jujuba Mill., a traditional medicine. Matrix metalloproteinases (MMPs) are involved in cancer metastasis and skin aging. Regulation of various MMPs is closely associated with mitogen-activated protein kinases (MAPKs), including ERK, p38, and JNK MAPKs. In this study, we investigated the possibility of ursonic acid as an anti-cancer/anti-skin aging agent targeting MMPs. Cytotoxic effects of ursonic acid were analyzed by cell counting kit-8 (CCK-8) assay. Invasive abilities of ursonic acid-treated A549 and H1299 non-small cell lung cancer (NSCLC) cells were tested with Boyden chamber assay. Effects of ursonic acid on MMPs were analyzed by zymography assays and quantitative real time polymerase chain reaction (qRT-PCR). We also conducted flow cytometry and western blot analysis to elucidate the mechanisms of MMP regulation by ursonic acid. Our results revealed that ursonic acid inhibited transcriptional expression of gelatinases (MMP-2 and MMP-9) via inhibition of ERK and CREB signaling pathways in NSCLC cells. Moreover, ursonic acid reduced mRNA levels of collagenase (MMP-1) via suppression of ERK and c-Fos signaling pathways in HaCaT keratinocytes. These results suggest that ursonic acid could be a potential candidate for development of an effective novel anti-cancer and anti-wrinkle agent.
Collapse
|
50
|
Fang Y, Yang C, Zhang L, Wei L, Lin J, Zhao J, Peng J. Spica Prunellae Extract Enhances Fluorouracil Sensitivity of 5-Fluorouracil-Resistant Human Colon Carcinoma HCT-8/5-FU Cells via TOP2 α and miR-494. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5953619. [PMID: 31662984 PMCID: PMC6791265 DOI: 10.1155/2019/5953619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
The use of 5-fluorouracil (5-FU) has been proven benefits, but it also has adverse events in colorectal cancer (CRC) chemotherapy. In this study, we explored the mechanism of 5-FU resistance by bioinformatics analysis of the NCBI public dataset series GSE81005. Fifteen hub genes were screened out of 582 different expressed genes. Modules of the hub genes in protein-protein interaction networks gathered to TOP2α showed a decrease in HCT-8 cells but an increase in 5-FU-resistant HCT-8/5-FU cells with 5-FU exposure. Downregulation of TOP2α with siRNA or miR-494 transfection resulted in an increase of cytotoxicity and decrease of cell colonies to 5-FU for HCT-8/5-FU cells. Moreover, we found that an ethanol extract of Spica Prunellae (EESP), which is a traditional Chinese medicine with clinically beneficial effects in various cancers, was able to enhance the sensitivity of 5-FU in HCT-8/5-FU cells and partly reverse the 5-FU resistance effect. It significantly helped suppress cell growth and induced cell apoptosis in HCT-8/5-FU cells with the expression of TOP2α being significantly suppressed, which increased by 5-FU. Consistently, miR-494, which reportedly regulates TOP2α, exhibited reverse trends in EESP/5-FU combination treatment. These results suggested that Spica Prunellae may be beneficial in the treatment of 5-FU-resistant CRC patients.
Collapse
Affiliation(s)
- Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chi Yang
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|