1
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
2
|
Zhou J, Ning K, Yang Y, Zou L, Xue J, Kong X, Li W. 1H-NMR -based metabolic analysis on biocompatibility of dental biomaterials. Process Biochem 2022. [DOI: 10.1016/j.procbio.2020.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Chen H, Sha X, Luo Y, Chen J, Li X, Wang J, Cao G, Peng X. Acute and subacute toxicity evaluation of Houttuynia cordata ethanol extract and plasma metabolic profiling analysis in both male and female rats. J Appl Toxicol 2021; 41:2068-2082. [PMID: 34057207 DOI: 10.1002/jat.4198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Houttuynia cordata has been used as a traditional medicine for more than 1500 years. It has aroused wide public concern about its safety in the past few years, for it contains various aristolactams. However, the safety of H. cordata extract remains unclear. In the present study, single dose (2000 mg/kg) and subacute (250, 500, and 1000 mg/kg/day for 28 days) oral toxicity studies of the 95% ethanol extract of H. cordata (HCE) were performed in both male and female Sprague-Dawley (SD) rats. Hematological, biochemical, histopathological parameters, and plasma metabolic profiling were assessed. The single-dose toxicity of HCE was more than 2000 mg/kg. The subacute toxicity results showed that no significant adverse effect of HCE was observed at 250 mg/kg/day. However, five rats died in 500 and 1000 mg/kg/day groups and exhibited toxicities to liver and kidney. Plasma metabolic profiling analysis suggested that a number of metabolic disturbances were induced by oral administration of HCE, focusing on energy metabolism, amino acid metabolism, and lipids metabolism. Moreover, it appeared that male rats were more susceptible to the toxic effects of HCE than female rats. Therefore, in this preliminary study, oral administration of HCE 250 mg/kg/day can be regarded as the no observed adverse effect level in rats over 28 days. However, long-term use of HCE with large doses exhibited some hepatotoxicity and nephrotoxicity in rats.
Collapse
Affiliation(s)
- Hongjiang Chen
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Xiuxiu Sha
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Yiyuan Luo
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Jianwei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Wang
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Gang Cao
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Peng
- College of Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| |
Collapse
|
4
|
Yan X, Zhao M, Zou W, Tian P, Sun L, Wang M, Zhao C. Investigation of the incompatibility of Knoxiae Radix and Glycyrrhizae Radix et Rhizoma in rats by 1 H NMR and MS-based untargeted metabolomic analysis. Biomed Chromatogr 2021; 35:e5120. [PMID: 33749888 DOI: 10.1002/bmc.5120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
Knoxiae Radix (HDJ, usually used after being processed into CHDJ) is a traditional Chinese herbal medicine that has been recorded in the Chinese Pharmacopoeia for many years. It is said that Glycyrrhizae Radix et Rhizoma (GC) is incompatible with HDJ, but this is unproven. In this work, nontargeted metabolomics experiments were performed on rats to evaluate the effect of the combination of the two herbals. For this, we conducted a 28-day administration in rats. The plasma, urine and kidney tissues were collected for a metabolomics study based on 1 H NMR and LC-MS. The OPLS-DA method was used to screen biomarkers. In addition, the KEGG Pathway database and MetaboAnalyst were used to find metabolic pathways. Twenty-two significant metabolites were identified. These metabolites were related to many metabolic pathways such as amino acid metabolism, synthesis and degradation of ketone bodies. Significant changes in urine creatinine levels revealed that CHDJ is nephrotoxic. When the GC-CHDJ mass ratio was 1, the toxicity was strengthened; when the GC-CHDJ' mass ratio was 3, the toxicity was alleviated. This is the first time that a metabolomics approach has been used to investigate the incompatibility of GC-CHDJ.
Collapse
Affiliation(s)
- Xu Yan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Wanru Zou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Pengyao Tian
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Zhang D, Lv J, Zhang B, Zhang X, Jiang H, Lin Z. The characteristics and regularities of cardiac adverse drug reactions induced by Chinese materia medica: A bibliometric research and association rules analysis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112582. [PMID: 31972324 DOI: 10.1016/j.jep.2020.112582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese materia medica (CMM) has been widely used as an approach of ethnomedicine worldwide. Recently, there are growing concerns related to the potential cardiotoxicity of herbal medicines but comprehensive studies are limited. METHODS Comprehensive literature retrieval via publicly available electronic databases was performed to identify the case reports that focused on cardiac adverse reactions (ADRs) triggered by oral CMMs. And a bibliometric survey was conducted to analyze the most commonly suspected risk factors in terms of responsible CMMs, susceptible patients and clinical administration of cardiac ADRs. Moreover, the techniques of data mining were utilized to investigate the regularities and association between the ADRs status and major contributory factors. RESULTS The available evidence of current research indicated that many influential factors were strongly associated with cardiac ADRs caused by oral CMMs inevitably, including pediatric patients, poisonous CMMs (especially herbs of Aconitum species), overdose and self-medication. Specifically, the timely and effective resuscitation could attribute their favorable capacity to reduce mortality for cardiac ADRs. Notably, the cardiac ADRs cases had often concomitant the ADRs of the nervous system and digestive system. CONCLUSION The comprehensive features and risk factors of cardiac ADRs induced by oral CMMs can be discovered and elucidated through the approaches of bibliometric research, association rules analysis, and data mining technology, which raise the profile and awareness of the rational applications of CMMs and pharmacovigilance within relevant heart side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| | - Jintao Lv
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China; Center for Pharmacovigilance and Rational Use of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| | - Hao Jiang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| | - Zhijian Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11 North Three-ring East Road, Chao Yang District, Beijing, 100029, China.
| |
Collapse
|
6
|
Network toxicology and LC-MS-based metabolomics: New approaches for mechanism of action of toxic components in traditional Chinese medicines. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Jiang H, Yang L, Xing X, Yan M, Guo X, Man W, Hou A, Yang B, Wang QH, Kuang HX. A simple liquid chromatography coupled with tandem mass spectrometry approach for the simultaneous quantification of thirteen compounds in rats following oral administration of raw and processed Fructus Xanthii: Application in a comparative pharmacokinetic study. J Sep Sci 2019; 42:3403-3412. [PMID: 31513345 DOI: 10.1002/jssc.201900506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 12/12/2022]
Abstract
A simple and sensitive analysis using ultra high performance liquid chromatography with a tandem mass spectrometric system operated in selected reaction monitoring mode was developed for the determination of 11 phenolic acids, atractyloside, and carboxyatractyloside in rat plasma. The two classes of analytes were then separated on a Waters ACQUITY™ UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 µm) using gradient elution with a mobile phase of 0.2% formic acid in water containing 10 mM ammonium acetate and methanol. Detection was accomplished by selected reaction monitoring scanning via an electrospray source operating in negative ionization mode. The calibration curve was linear (R2 = 0.990) over a concentration range of 1.20-3500 ng/mL, while the validated lower limit of quantification was 1.20 ng/mL. The precision varied from 0.84 to 4.62%, and the accuracy varied within ±5%. The method proved robust with sample freezing and thawing and with short- and long-term sample storage. The established method was used for simultaneous quantification and was successfully used for the first time for the pharmacokinetic evaluation of 13 compounds after the intragastric administration of raw and processed Fructus Xanthii in rats. The results indicated that processing affects the absorption and metabolism of Fructus Xanthii extract. Importantly, the results also indicated the importance of processing for the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Xudong Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Meiling Yan
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Xinyue Guo
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Wenjing Man
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| | - Qiu-Hong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China.,Guangdong Pharmaceutical University, Guangzhou, P. R. China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, P. R. China
| |
Collapse
|
8
|
Wang Y, Feng F. Evaluation of the Hepatotoxicity of the Zhi-Zi-Hou-Po Decoction by Combining UPLC-Q-Exactive-MS-Based Metabolomics and HPLC-MS/MS-Based Geniposide Tissue Distribution. Molecules 2019; 24:E511. [PMID: 30708983 PMCID: PMC6384998 DOI: 10.3390/molecules24030511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 12/20/2022] Open
Abstract
With traditional Chinese medicine (TCM) becoming widespread globally, its safety has increasingly become a concern, especially its hepatoxicity. For example, Gardenia jasminoides Ellis is a key ingredient in the Zhi-Zi-Hou-Po decoction (ZZHPD), which is a commonly-used clinically combined prescription of TCM that may induce hepatoxicity. However, the underlying toxicity mechanism of ZZHPD is not fully understood. In this study, a plasma metabolomics strategy was used to investigate the mechanism of ZZHPD-induced hepatotoxicity through profiling entire endogenous metabolites. Twenty-four Sprague-Dawley rats were randomly assigned into four groups, which were orally administered with 0.9% saline, as well as 2.7 g/kg/day, 8.1 g/kg/day, or 27 g/kg/day of ZZHPD for 30 consecutive days, respectively. Biochemical assay and metabolomics assay were used to detect serum and plasma samples, whilst histopathological assay was used for detecting liver tissues, and the geniposide distribution in tissues was simultaneously measured. The results showed that the concentration of 20 metabolites linked to amino acid, lipid, and bile acid metabolism had significant changes in the ZZHPD-treated rats. Moreover, toxic effects were aggravated with serum biochemical and histopathological examines in liver tissues as the dosage increased, which may be associated with the accumulation of geniposide in the liver as the dosage increased. Notably, our findings also demonstrated that the combined metabolomics strategy with tissue distribution had significant potential for elucidating the mechanistic complexity of the toxicity of TCM.
Collapse
Affiliation(s)
- Yunji Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Fang Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Jiang H, Yang L, Xing X, Yan M, Guo X, Hou A, Man W, Yang B, Wang Q, Kuang H. A UPLC-MS/MS application for comparisons of the hepatotoxicity of raw and processed Xanthii Fructus by energy metabolites. RSC Adv 2019; 9:2756-2762. [PMID: 35520491 PMCID: PMC9059864 DOI: 10.1039/c8ra08272c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/05/2019] [Indexed: 11/21/2022] Open
Abstract
The ripe fruit of Xanthium strumarium L. (Xanthii Fructus) cannot be widely used as a Chinese herbal medicine (CHM) owing to its hepatotoxicity. However, Xanthii Fructus (XF) can be used effectively and safely after correct processing based on traditional experience, although a high hepatotoxicity risk remains owing to improper usage. Therefore, the processing methods used must be clarified to ensure safety. The adenosine-5'-triphosphate (ATP) level in tissues is an important indicator reflecting the functional status of liver cells. Therefore, this study aims to evaluate the hepatotoxicity of XF using UPLC-MS/MS. The hepatotoxicity of raw XF (RXF) and XF processed by intermediary energy metabolites (PXF) is compared. The method is evaluated for its analytical performance and successfully applied to the quantification of ATP, adenosine-5'-diphosphate (ADP), adenosine-5'-monophosphate (AMP), atractyloside, and carboxyatractyloside in mouse liver. The hepatotoxicity results also indicate that the toxicity of XF is decreased after processing, perhaps due to the decrease in atractyloside and carboxyatractyloside contents. Importantly, the experimental evidence provides a rationale for the reduction in toxicity. These data show that mouse livers are damaged between the days 20 and 30 of RXF oral administration, and that the ATP level is decreased. Importantly, no significant difference is observed between the PXF treatment group and control group, while the RXF treatment group is significantly different. Therefore, processing can reduce the toxicity of XF.
Collapse
Affiliation(s)
- Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| | - Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| | - Xudong Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| | - Meiling Yan
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| | - Xinyue Guo
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| | - Wenjing Man
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University Guangzhou 528458 PR China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education Harbin 150040 PR China
| |
Collapse
|
10
|
Interpretation of Euphorbia Kansui Stir-Fried with Vinegar Treating Malignant Ascites by a UPLC-Q-TOF/MS Based Rat Serum and Urine Metabolomics Strategy Coupled with Network Pharmacology. Molecules 2018; 23:molecules23123246. [PMID: 30544627 PMCID: PMC6322356 DOI: 10.3390/molecules23123246] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Euphorbia kansui stir-fried with vinegar (V-kansui) has promising biological activities toward treating malignant ascites with reduced toxicity compared to crude kansui. But the mechanism concerning promoting the excretion of ascites has not been systematically studied. The purpose of this paper was to investigate the possible mechanism of V-kansui in treating malignant ascites, including metabolic pathways and molecular mechanism using an integrated serum and urine metabolomics coupled with network pharmacology. Serum and urine samples of rats were collected and analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A comparison with crude kansui was also made to demonstrate the feasibility of processing. Principle component analysis (PCA) and orthogonal partial least square discriminate analysis (OPLS-DA) were conducted to discriminate the groups, search important variables and reveal the possible pathways. A compound-target-metabolite network was finally constructed to identify the crucial targets to further understand the molecular mechanism. Sixteen significant metabolites contributing to the discrimination of model and control groups were tentatively screened out. They were mainly involved in the arachidonic acid metabolism, steroid hormone biosynthesis and primary bile acid to possibly reduce inflammatory and modulate the renin-angiotensin-aldosterone system to achieve treating malignant ascites. A bio-network starting from the compounds and ending in the metabolites was constructed to elucidate the molecular mechanism. HSP90AA1, ANXA2, PRDX6, PCNA, SOD2 and ALB were identified as the potential key targets that were responsible for the treatment of malignant ascites by the parameter combining the average shortest path length and betweenness centrality. The correlated 17 compounds were considered as the potential active ingredients in V-kansui. In addition, the metabolomics showed that the effect of V-kansui was almost in accordance with crude kansui. These results systematically revealed the mechanism of V-kansui against malignant ascites for the first time using metabolomics coupled with network pharmacology. V-kansui could be a promising safe and therapeutic medicine for the excretion of ascites.
Collapse
|
11
|
Duan L, Guo L, Wang L, Yin Q, Zhang CM, Zheng YG, Liu EH. Application of metabolomics in toxicity evaluation of traditional Chinese medicines. Chin Med 2018; 13:60. [PMID: 30524499 PMCID: PMC6278008 DOI: 10.1186/s13020-018-0218-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/29/2018] [Indexed: 01/14/2023] Open
Abstract
Traditional Chinese medicines (TCM) have a long history of use because of its potential complementary therapy and fewer adverse effects. However, the toxicity and safety issues of TCM have drawn considerable attention in the past two decades. Metabolomics is an “omics” approach that aims to comprehensively analyze all metabolites in biological samples. In agreement with the holistic concept of TCM, metabolomics has shown great potential in efficacy and toxicity evaluation of TCM. Recently, a large amount of metabolomic researches have been devoted to exploring the mechanism of toxicity induced by TCM, such as hepatotoxicity, nephrotoxicity, and cardiotoxicity. In this paper, the application of metabolomics in toxicity evaluation of bioactive compounds, TCM extracts and TCM prescriptions are reviewed, and the potential problems and further perspectives for application of metabolomics in toxicological studies are also discussed.
Collapse
Affiliation(s)
- Li Duan
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Long Guo
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China.,4Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Lei Wang
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - Qiang Yin
- Department of Management, Xinjiang Uygur Pharmaceutical Co., Ltd., Wulumuqi, 830001 China
| | - Chen-Meng Zhang
- 1College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 China
| | - Yu-Guang Zheng
- 2School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200 China
| | - E-Hu Liu
- 3State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
12
|
Gu YY, Shi L, Zhang DD, Huang X, Chen DZ. Metabonomics delineates allergic reactions induced by Shuang-huang-lian injection in rats using ultra performance liquid chromatography-mass spectrometry. Chin J Nat Med 2018; 16:628-640. [PMID: 30197129 DOI: 10.1016/s1875-5364(18)30101-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/19/2022]
Abstract
Shuang-huang-lian Injection (SHLI) is the first successfully developed drug from traditional Chinese medicine (TCM) powder for injection, since its use for the treatment of acute respiratory tract infection, pneumonia, influenza, etc. At the same time, its allergic reactions have also emerged, which limits clinical applications. However, few scholars pay attention to the mechanism of allergic reactions. In this present study, metabonomics technology was used to explore the changes in endogenous metabolites in urine of the rat model of SHLI induced allergic reaction; we and analyzed the metabolites, metabolic pathway, and the mechanism which were closely related to the allergic reactions. The levels of serum histamine and tryptase were examined and changes in histomorphology were also observed. Based on the UPLC-Q-TOF/MS metabonomics, we carried out the pattern recognition analysis, selected potential biomarkers associated with allergic reactions, and explored the pathological mechanism for SHLI induced allergic reaction, which laid the foundation for the safety research of SHLI. Our results showed that SHLI increased the levels of serum histamine and tryptase in rats with allergic reaction; we determined 15 biomarkers in rat allergic reaction model induced by SHLI and found multiple metabolic pathways involved, such as metabolism of linolenic acid, phenylalanine, amino acid, 2-oxo acid, and purine and other metabolic pathways.
Collapse
Affiliation(s)
- Yuan-Yuan Gu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lang Shi
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dan-Dan Zhang
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xin Huang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Da-Zhong Chen
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
13
|
Yu CQ, Chen JP, Zhong YM, Zhong XL, Tang CP, Yang Y, Lin HQ. Metabolomic profiling of rat urine after oral administration of the prescription antipyretic Hao Jia Xu Re Qing Granules by UPLC/Q-TOF-MS. Biomed Chromatogr 2018; 32:e4332. [PMID: 29981286 DOI: 10.1002/bmc.4332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022]
Abstract
Hao Jia Xu Re Qing Granules (HJ), is an effective clinically used antipyretic based on traditional Chinese medicine. Although its antipyretic therapeutic effectiveness is obvious, its therapeutic mechanism has not been comprehensively explored yet. In this research, we first identified potential biomarkers which may be relevant for the antipyretic effect of HJ based on urine metabolomics using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A rat model of fever was established using the yeast-induced febrile response. Total-ion-current metabolic profiles of different groups were acquired and the data were processed by multivariate statistical analysis-partial least-squares discriminant analysis. As envisioned, the results revealed changes of urine metabolites related to the antipyretic effect. Fourteen potential biomarkers were selected from the urine samples based on the results of Student's t-test, "shrinkage t", variable importance in projection and partial least-squares discriminant analysis. N-Acetylleucine, kynurenic acid, indole-3-ethanol, nicotinuric acid, pantothenic acid and tryptophan were the most significant biomarkers found in the urine samples, and may be crucially related to the antipyretic effect of HJ. Consequently, we propose the hypothesis that the significant antipyretic effect the HJ may be related to the inhibition of tryptophan metabolism. This research thus provides strong theoretical support and further direction to explain the antipyretic mechanism of HJ, laying the foundation for future studies.
Collapse
Affiliation(s)
- Chu-Qin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Ping Chen
- The First Hospital Affiliated to Sun Yat-sen University, Guangzhou, P.R. China
| | - Yan-Mei Zhong
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xun-Long Zhong
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Chun-Ping Tang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua-Qing Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
14
|
Qiu S, Zhang H, Fei Q, Zhu F, Wang J, Jia X, Chen B. Urine and plasma metabolomics study on potential hepatoxic biomarkers identification in rats induced by Gynura segetum. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:37-46. [PMID: 29353003 DOI: 10.1016/j.jep.2018.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynura segetum (GS) is an herbal medicine containing Pyrrolizidine Alkaloids (PAs) that causes hepatic sinusoidal obstruction syndrome (HSOS). AIM OF THE STUDY To discover potential biomarkers and metabolic mechanisms involved in the hepatotoxicity induced by GS. METHODS SD rats were randomly divided into 4 groups including Saline, the decoction of GS high, medium and low dosage at dosages of 3.75g • kg-1, 7.5g • kg-1 and 15g • kg-1. A metabolomics approach using Ultraperformance Liquid Chromatography -Quadrupole-Time-of-Flight / Mass Spectrometry (UPLC-Q-TOF/MS) was developed to perform the plasma and urinary metabolic profiling analysis, and identified differential metabolites by comparing the saline control group and decoction of GS groups. RESULTS The herbal was presented dosage-dependent led to ingravescence of hepatotoxicity after the rats were consecutively given with the decoction of GS at varied dosages. A total of 18 differential metabolites of decoction of GS-induced hepatotoxicity were identified, while 10 of them including arginine, proline, glutamate, creatine, valine, linoleic acid, arachidonic acid, sphinganine, phytosphingosine, and citric acid could be discovered in urine and plasma, and primarily involved in Amino acid metabolism, Lipids metabolism and Energy metabolism. CONCLUSIONS The results suggested that the differential metabolites of arginine, creatine, valine, glutamine and citric acid were verified as potential markers of GS-induced hepatotoxicity via the regulation of multiple metabolic pathways primarily involving in Amino acids metabolism and Energy metabolism.
Collapse
Affiliation(s)
- Shoubei Qiu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haixia Zhang
- Department of Pharmacy, Nanjing university medical school Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Qianqian Fei
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Xiaobin Jia
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China
| | - Bin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; Key Laboratory of Chinese Medicine Delivery System of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Shi Zi Street No. 100, Hongshan Road, Jiangsu, Nanjing 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
15
|
Zhang PJ, Li YM, Zhang YN, Huang W, Li YB, Zhang YJ, Liu CX. Application and prospect of toxicity quality markers of Chinese materia medica based on metabolomics. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Zhang XF, Zhang CH, Zheng J, Li LX, Geng TQ, Zhang Y. Potential biomarkers for monitoring the toxicity of long-term exposure to atrazine in rat by metabonomic analysis. Xenobiotica 2017; 48:241-249. [PMID: 28322061 DOI: 10.1080/00498254.2017.1303221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Herbicide atrazine (ATR) poses harmful effects on human health. The purpose of this study is to study potential biomarkers used for monitoring the toxic effects after chronic exposure to ATR by studying urine metabolites. 2. Rats were assigned into clinical chemistry and metabonomics arms, and each arm was divided into low-dose, high-dose and control groups. ATR was administered to rats along with their feed. At the end of 16, 20 and 24 weeks, clinical parameters and histopathologic changes was assessed to monitor the toxic effects. Twenty-four hour urine samples was analyzed by UPLC-MS, to find the significant alterations in metabolic profiling. 3. The body weight of rats in ATR group was lower than that of control starting from 12th week; abnormal levels of serum biochemistry and histopathologic alterations of organs were found initially from 16th and 20th week, respectively. Five exogenous and five endogenous metabolites were found which showed significant differences between ATR groups and control group at above-mentioned time points. 4. These metabolites may be used as potential indicators to monitor ATR toxicity, and also may provide some clues for understanding the mechanism of toxicity of ATR. The exact relationship between endogenous metabolites and ATR toxicity needs further investigation.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- a Department of Toxicology, Public Health School , Harbin Medical University , Harbin , P.R. China
| | - Chong-Hua Zhang
- b Department of Toxicology , Harbin Centre for Disease Control and Prevention , Harbin , P.R. China , and
| | - Jing Zheng
- c Department of Public Health Monitoring , Heilongjiang Provincial Centre for Disease Control and Prevention , Harbin , P.R. China
| | - Long-Xue Li
- a Department of Toxicology, Public Health School , Harbin Medical University , Harbin , P.R. China
| | - Tian-Qi Geng
- a Department of Toxicology, Public Health School , Harbin Medical University , Harbin , P.R. China
| | - Yang Zhang
- a Department of Toxicology, Public Health School , Harbin Medical University , Harbin , P.R. China
| |
Collapse
|
17
|
Yan H, Qiao Z, Shen B, Xiang P, Shen M. Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis. Forensic Sci Int 2016; 267:129-135. [PMID: 27598867 DOI: 10.1016/j.forsciint.2016.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
Brodifacoum is one of the most widely used rodenticides for rodent control and eradication; however, human and animal poisoning due to primary and secondary exposure has been reported since its development. Although numerous studies have described brodifacoum induced toxicity, the precise mechanism still needs to be explored. Gas chromatography mass spectrometry (GC-MS) coupled with an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to characterize the metabolic profile of brodifacoum induced toxicity and discover potential biomarkers in rat plasma. The toxicity of brodifacoum was dose-dependent, and the high-dose group obviously manifested toxicity with subcutaneous hemorrhage. The blood brodifacoum concentration showed a positive relation to the ingestion dose in toxicological analysis. Significant changes of twenty-four metabolites were identified and considered as potential toxicity biomarkers, primarily involving glucose metabolism, lipid metabolism and amino acid metabolism associated with anticoagulant activity, nephrotoxicity and hepatic damage. MS-based metabonomics analysis in plasma samples is helpful to search for potential poisoning biomarkers and to understand the underlying mechanisms of brodifacoum induced toxicity.
Collapse
Affiliation(s)
- Hui Yan
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China; Department of Forensic Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zheng Qiao
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China
| | - Baohua Shen
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China
| | - Ping Xiang
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China
| | - Min Shen
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China.
| |
Collapse
|
18
|
Zhang B, Zhang Q, Liu M, Zhang X, Shi D, Guo L, Duan J, Zhu H, Zhou X. Increased involvement of Panax notoginseng in the mechanism of decreased hepatotoxicity induced by Tripterygium wilfordii in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 185:243-254. [PMID: 26997552 DOI: 10.1016/j.jep.2016.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/29/2015] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The key problem with toxic Chinese herbs in clinical applications is how to find the most effective method to reduce toxicity. This study focuses on discussing the mechanism of decreased hepatotoxicity by the usage compatibility of two commonly used traditional Chinese drugs that are used clinically: Tripterygium wilfordii Hook. f. (TW) and Panax notoginseng (Burkill) F.H. Chen (PN). Additionally, based on the results from using metabonomics technology, the usage compatibility with these two herbs that was originated from clinical experience is the first to clarify the rationality of the drug combination. MATERIALS AND METHODS Through a fast and effective HPLC method, plasma concentration-time profiles and triptolide distribution characteristics in liver, heart, spleen, lung and kidney tissues were simultaneously determined in rats after oral administration of the aqueous extract of TW and TW-PN. The reduced hepatotoxicity data of the usage compatibility with TW and PN were also investigated, and then a UHPLC-QTOF/MS method was developed and validated for the explanation of the reduced hepatotoxicity mechanism. RESULTS It was indicated that nine endogenous metabolites might be potential biomarkers for hepatotoxicity induced by TW. In addition, the plasma concentration-time profiles and the distribution characteristics of TP in rats were changed after oral administration of the aqueous extract of TW-PN, and simultaneously, the hepatotoxicity was obviously decreased. CONCLUSIONS The results indicated that usage compatibility with TW and PN was reasonable in clinical use. To the best of our knowledge, this is the first report to describe the mechanism of reducing hepatotoxicity with the combined use of TW and PN from clinical experience.
Collapse
Affiliation(s)
- Benyong Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qichun Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengzhu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinlong Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Donglei Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liwei Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huaxu Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xueping Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| |
Collapse
|
19
|
Miao YJ, Shi YY, Li FQ, Shan CX, Chen Y, Chen JW, Li X. Metabolomics study on the toxicity of Annona squamosa by ultraperformance liquid-chromatography high-definition mass spectrometry coupled with pattern recognition approach and metabolic pathways analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:187-95. [PMID: 26965366 DOI: 10.1016/j.jep.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Annona squamosa Linn (Annonaceae) is a commonly used and effective traditional Chinese medicine (TCM) especially in the South China. The seeds of Annona squamosa Linn (SAS) have been used as a folk remedy to treat "malignant sores" (cancer) in South of China, but they also have high toxicity on human body. AIM OF THE STUDY To discover the potential biomarkers in the mice caused by SAS. MATERIALS AND METHODS We made metabonomics studies on the toxicity of SAS by ultraperformance liquid-chromatography high-definition mass spectrometry coupled with pattern recognition approach and metabolic pathways analysis. RESULTS The significant difference in metabolic profiles and changes of metabolite biomarkers between the Control group and SAS group were well observed. 11 positive ions and 9 negative ions (P<0.05) were indicated based on UFLC-QTOF-HDMS. The metabolic pathways of SAS group are discussed according to the identified endogenous metabolites, and eight metabolic pathways are identified using Kyoto Encyclopedia of Genes and Genomes (KEGG). CONCLUSIONS The present study demonstrates that metabonomics analysis could greatly facilitate and provide useful information for the further comprehensive understanding of the pharmacological activity and potential toxicity of SAS in the progress of them being designed to a new anti-tumor medicine.
Collapse
Affiliation(s)
- Yun-Jie Miao
- Nanjing University of Chinese Medicine, Pharmaceutical institute, Nanjing 210046, China.
| | - Ye-Ye Shi
- Nanjing University of Chinese Medicine, Pharmaceutical institute, Nanjing 210046, China.
| | - Fu-Qiang Li
- Nanjing University of Chinese Medicine, Pharmaceutical institute, Nanjing 210046, China.
| | - Chen-Xiao Shan
- Nanjing University of Chinese Medicine, Pharmaceutical institute, Nanjing 210046, China.
| | - Yong Chen
- Nanjing University of Chinese Medicine, Pharmaceutical institute, Nanjing 210046, China.
| | - Jian-Wei Chen
- Nanjing University of Chinese Medicine, Pharmaceutical institute, Nanjing 210046, China.
| | - Xiang Li
- Nanjing University of Chinese Medicine, Pharmaceutical institute, Nanjing 210046, China.
| |
Collapse
|
20
|
Chen DQ, Chen H, Chen L, Tang DD, Miao H, Zhao YY. Metabolomic application in toxicity evaluation and toxicological biomarker identification of natural product. Chem Biol Interact 2016; 252:114-30. [DOI: 10.1016/j.cbi.2016.03.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 01/01/2023]
|
21
|
Wang Y, Man H, Gao J, Liu X, Ren X, Chen J, Zhang J, Gao K, Li Z, Zhao B. Plasma metabonomics study on toxicity biomarker in rats treated withEuphorbia fischerianabased on LC-MS. Biomed Chromatogr 2016; 30:1386-96. [DOI: 10.1002/bmc.3696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yingfeng Wang
- Department of Chemistry; Capital Normal University; No. 105, Xisanhuanbeilu, Haidian District Beijing 100048 People's Republic of China
| | - Hongxue Man
- Department of Chemistry; Capital Normal University; No. 105, Xisanhuanbeilu, Haidian District Beijing 100048 People's Republic of China
| | - Jian Gao
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Xinfeng Liu
- Department of Chemistry; Capital Normal University; No. 105, Xisanhuanbeilu, Haidian District Beijing 100048 People's Republic of China
| | - Xiaolei Ren
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Jianxin Chen
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Jiayu Zhang
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Kuo Gao
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| | - Zhongfeng Li
- Department of Chemistry; Capital Normal University; No. 105, Xisanhuanbeilu, Haidian District Beijing 100048 People's Republic of China
| | - Baosheng Zhao
- Beijing University of Chinese Medicine; No. 11 Beisanhuandonglu, Chaoyang District Beijing 100029 People's Republic of China
| |
Collapse
|
22
|
Wang Y, Hu H, Su Y, Zhang F, Guo Y. Potential of monitoring isotopologues by quantitative gas chromatography with time-of-flight mass spectrometry for metabolomic assay. J Sep Sci 2016; 39:1137-43. [DOI: 10.1002/jssc.201501137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/24/2015] [Accepted: 12/25/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Yi Wang
- Center for Chinese Medicine Therapy and Systems Biology; Shanghai University of Traditional Chinese Medicine; Shanghai China
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai China
| | - Haiyan Hu
- Department of Biochemistry; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Yue Su
- Center for Chinese Medicine Therapy and Systems Biology; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Fang Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai China
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; Shanghai China
| |
Collapse
|
23
|
Shi J, Cao B, Wang XW, Aa JY, Duan JA, Zhu XX, Wang GJ, Liu CX. Metabolomics and its application to the evaluation of the efficacy and toxicity of traditional Chinese herb medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:204-216. [PMID: 26657802 DOI: 10.1016/j.jchromb.2015.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022]
Abstract
Traditional Chinese herb medicines (TCHMs) have been used in the treatment of a variety of diseases for thousands of years in Asian countries. The active components of TCHMs usually exert combined synergistic therapeutic effects on multiple targets, but with less potential therapeutic effect based on routine indices than Western drugs. These complex effects make the assessment of the efficacy of TCHMs and the clarification of their underlying mechanisms very challenging, and therefore hinder their wider application and acceptance. Metabolomics is a crucial part of systems biology. It allows the quantitative measurement of large numbers of the low-molecular endogenous metabolites involved in metabolic pathways, and thus reflects the fundamental metabolism status of the body. Recently, dozens of metabolomic studies have been devoted to prove the efficacy/safety, explore the underlying mechanisms, and identify the potential biomarkers to access the action targets of TCHMs, with fruitful results. This article presents an overview of these studies, focusing on the progress made in exploring the pharmacology and toxicology of various herbal medicines.
Collapse
Affiliation(s)
- Jian Shi
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Bei Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Pharmacy Department, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xin-Wen Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Ji-Ye Aa
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jin-Ao Duan
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan-Xuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, Jiangsu Key laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | - Chang-Xiao Liu
- Research Center of New Drug Evaluation, The National Laboratory of Pharmacodynamics and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
24
|
Li LY, Cao FF, Su ZJ, Zhang QH, Dai XY, Xiao X, Huang YD, Zheng Q, Xu H. Assessment of the embryotoxicity of four Chinese herbal extracts using the embryonic stem cell test. Mol Med Rep 2015; 12:2348-54. [PMID: 25873199 DOI: 10.3892/mmr.2015.3598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
Rhizoma Atractylodes macrocephala, Radix Isatidis, Coptis chinensis and Flos Genkwa are common herbal remedies used by pregnant woman in China. In this study, their potential embryotoxicity was assessed using the embryonic stem cell test (EST) and a prediction model. The potential embryotoxicity of the herbs was based on three endpoints: the concentrations of the compounds that inhibited the proliferation of 50% of embryonic stem cells (ESCs) (IC50ES), the concentrations that inhibited 50% of 3T3 cells (IC503T3), and the concentrations that inhibited the differentiation of 50% of ESCs (ID50ES). The results revealed that Rhizoma Atractylodes macrocephala and Radix Isatidis are non-embryotoxic compounds. Coptis chinensis extracts appeared to demonstrated weak embryotoxicity, and Flos Genkwa exhibited strong embryotoxicity. These results may be useful in guiding the clinical use of these herbs and in expanding the application of the EST to the field of traditional Chinese medicine.
Collapse
Affiliation(s)
- Lin-Yan Li
- Department of Microbiological and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Fen-Fang Cao
- Department of Microbiological and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhi-Jian Su
- Department of Biopharmaceutical Research and Development Centre, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qi-Hao Zhang
- Department of Biopharmaceutical Research and Development Centre, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiao-Yong Dai
- Department of Microbiological and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xue Xiao
- Department of Biopharmaceutical Research and Development Centre, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ya-Dong Huang
- Department of Biopharmaceutical Research and Development Centre, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qing Zheng
- Department of Microbiological and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Hua Xu
- Department of Microbiological and Biochemical Pharmacy, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
25
|
Zhang SN, Li XZ, Lu F, Liu SM. Cerebral potential biomarkers discovery and metabolic pathways analysis of α-synucleinopathies and the dual effects of Acanthopanax senticosus Harms on central nervous system through metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 163:264-272. [PMID: 25660332 DOI: 10.1016/j.jep.2015.01.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthopanax senticosus Harms (AS), also called "Ciwujia" in Chinese and "Siberian ginseng" in the Siberian Taiga region, is the herb used in traditional medicinal systems of China, Russia, Japan and Korea for the treatment of various nervous and cerebrovascular diseases. AIM OF THE STUDY Our pre-study has showed that AS can significantly suppress α-synuclein overexpression and toxicity. Neuronal protein α-synuclein is a key player in the development of neurodegenerative diseases called α-synucleinopathies. Identifying the potential biomarkers related to α-synucleinopathies may facilitate understanding the pathogenesis of the diseases and the safe application of AS in the clinic. METHODS AND RESULTS Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods was integrated to examine the cerebral metabolic signature of human α-synuclein transgenic mice and the effects of AS on central nervous system (CNS) in pathology and physiology. Totally, 17 differentially expressed metabolites in wild type (WT) group and 26 in A30P mutant (A30P) group were identified and considered as potential biomarkers. Among them, 11 endogenous metabolites in WT+AS group and 18 in A30P+AS group were involved in the anti-α-synucleinopathies mechanism of AS. However, western blot and metabolomics analysis showed the effects of AS on CNS in physiology were opposite to those in pathology, which may cause potential neurotoxicity. CONCLUSIONS This study demonstrated that endogenous metabolites perturbation was involved in the pathogenesis of α-synucleinopathies and AS produced the dual effects on pathological and physiological CNS.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Xu-Zhao Li
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China
| | - Fang Lu
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| | - Shu-Min Liu
- Chinese Medicine Toxicological Laboratory, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China; Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| |
Collapse
|
26
|
Jiang Y, Gu L, Zhang R, Zhang Y, Zhang L, Ju P, Ma B, Zhang K, Bi K, Chen X. Evaluation of the indicative roles of seven potential biomarkers on hepato-nephrotoxicity induced by Genkwa Flos. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:317-324. [PMID: 25446584 DOI: 10.1016/j.jep.2014.10.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genkwa Flos, a classical traditional Chinese medicine, is used for the definite antitumor activity and tends to be taken overdose or long term in these years. While the excessive application can result in damage to liver and kidney. In this study, the indicative roles of seven potential biomarkers were evaluated to investigate hepato-nephrotoxicity in the early stages after oral administration of Genkwa Flos for 14 days. MATERIALS AND METHODS Histopathology, serum biochemistry and seven potential biomarkers in serum or urine from male Sprague-Dawley rats were monitored. Hepatic and renal tissues were histopathologically examined to identify specific changes occurring. Routine serum biochemical parameters were tested by using standard clinical laboratory methods. Seven biomarkers including cholic acid, taurine, 5-oxoproline, hippuric acid, uric acid, 3-indoxyl sulfate and kynurenic acid were detected by a developed LC-MS method. RESULTS The histopathological alterations and the increased levels of serum biochemistry were detected on the 8th day after Genkwa Flos treated. The seven analytes were also found significantly changed in Genkwa Flos treated group, especially cholic acid, taurine, 5-oxoproline and hippuric acid which were changed on the 2nd or 4th day. CONCLUSIONS Although serum biochemistry and histopathology suggested that Genkwa Flos was responsible for the hepato-nephrotoxicity that occurred following the ingestion of this medicinal herb, evaluation of these biomarkers might be more beneficial for the early detection of liver and kidney injuries. This study could be further used in hepatic and renal failures caused by other reasons in the following research works.
Collapse
Affiliation(s)
- Yu Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liqiang Gu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruowen Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Rd., Grand Forks, ND 58202 USA
| | - Yuanyuan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lunhui Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ping Ju
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjie Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kexia Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
27
|
Zhang SN, Li XZ, wang Y, zhang N, Yang ZM, Liu SM, Lu F. Neuroprotection or neurotoxicity? new insights into the effects of Acanthopanax senticosus harms on nervous system through cerebral metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:290-300. [PMID: 25223591 DOI: 10.1016/j.jep.2014.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/30/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthopanax senticosus harms (AS), also called "Ciwujia" in Chinese and "Siberian ginseng" in the Siberian Taiga region, is the herb used in traditional medicinal systems in China and Russia, which has been applied to the treatment of various nervous and cerebrovascular diseases, such as depression, mental fatigue, and transient global cerebral ischemia. The previous research works usually tended to focus on the neuroprotective effects of AS, but ignored its additional effects that are not entirely beneficial to the nervous system. Therefore, to discover the potential intervention targets of AS and evaluate their roles in the nervous system are the urgent problems. MATERIALS AND METHODS Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods were integrated to investigate the metabolic profiles of AS-treated rats. The analysis of possible pathways influenced by AS was performed by ingenuity pathway analysis (IPA) with MetPA. RESULTS Treated with AS, 16 modulated metabolites were identified and considered as the potential intervention targets of AS, out of which 3 metabolites had protective effects on the nervous system, whereas 7 metabolites showed the neurotoxicity. CONCLUSION These results may reveal that the effects of AS on nervous system had two sides, and it could not only exert the neuroprotection but also produce some potential neurotoxicity.
Collapse
Affiliation(s)
- Shuai-nan Zhang
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Xu-zhao Li
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Yu wang
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Na zhang
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Zhi-ming Yang
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Shu-min Liu
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China; Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China.
| | - Fang Lu
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China.
| |
Collapse
|